
f
(NASA-CR-187399) A 3TUOY OF SYSTEM

INTCR_ACE SFTS (SIS) FOR THE HOST, TARGET

AND INTEGRATION ENVIRONMENT_ OF THE SPACE

STATION PROGRAM (SSP) Final Report (Houston

Univ.) 96 p CSCI 09B

NgI- 130qo

/3

Uncl _s

G3/bl 0312537

A Study of System Interface Sets(SIS)
for the Host, Target and Integration
Environments 0i the Space Station

Program(SSP)

C. McKay

University of Houston - Clear Lake

D. Auty
SofTech, Inc.

K. Rogers

Rockwell International

June 30,1987

Cooperative Agreement Ncc 9-16
Research Activity No. SE.10

© ©

Research Institute for Computing and Information Systems

University of Houston - Clear Lake

T.E.C.H.N.I'C'A'L R.E.P.O.R'T

m

The

RICIS

Concept

The University of Houston-Clear Lake established the Research Institute for

Computing and Information systems in 1986 to encourage NASA Johnson Space

Center and local industry to actively support research in the computing and

information sciences. As part of this endeavor, UH-Clear Lake proposed a

partnership with JSC to jointly define and manage an integrated program of research
in advanced data processing technology needed for JSC's main missions, including

administrative, engineering and science responsibilities. JSC agreed and entered into

a three-year cooperative agreement with UH-Clear Lake beginning in May, 1986, to

jointly plan and execute such research through RICIS. Additionally, under

Cooperative Agreement NCC 9-16, computing and educational facilities are shared

by the two institutions to conduct the research.
The miss/on of RICIS is to conduct, coordinate and disseminate research on

computing and information systems among researchers, sponsors and users from
UI-I-Clear Lake, NASA/JSC, and other research organizations. Within UH-Clear
Lake, the mission is being implemented through interdisciplinary involvement of
faculty and students from each of the four schools: Business, Education, Human
Sciences and Humanities, and Natural and Applied Sciences.

Other research organizations are involved via the "gateway" concept. UH-Clear

Lake establishes relationships with other universities and research organizations,
having common research interests, to provide additional sources of expertise to
conduct needed research.

A major role of RICIS is to find the best match of sponsors, researchers and

research objectives to advance knowledge in the computing and information

sciences. Working jointly with NASA/JSC, RICIS advises on research needs,
recommends principals for conducting the research, provides technical and

administrative support to coordinate the research, and integrates technical results
into the cooperative goals of UH-Clear Lake and NASA/JSC.

,,.,mr

Study of System Interface Sets (SIS)
for the Host, Target, and Integration

Environments of the
Space Station Program (SSP)

w

w

w

Preface

w

w

This research was conducted under the auspices of the Research Institute for

Computing and Information Systems by Charles McKay, Director of the Software

Engineering Research Center (SERC) at the University of Houston-Clear Lake,

David Auty of SofTech, Inc., and Kathy Rogers of Rockwell International

Funding has been provided by the Spacecraft Software Division, within the

Mission Support Directorate, NASA/JSC through Cooperative Agreement NCC 9-16

between NASA Johnson Space Center and the University of Houston-Clear Lake.

The NASA Technical Monitor for this activity was Stephen Gorman, Head,

Applications Systems Section, Systems Development Branch, NASA/JSC.

The views and conclusions contained in this report are those of the authors and

should not be interpreted as representative of the official policies, either express or

implied, of NASA or the United States Government.

University
of Houston

Clear Lake
Diroctor,

High Technologies Lab

' t|
i i |

Final Report

on

w

A Study of System Interface Sets (SIS) For the Host, Target, and

Integration Environments of the Space Station Program (SSP)

Research Activity No. SE. i0

Contract # NCC 9-16

By

Charles McKay, Team Leader

Software Engineering Research Center

David Auty

Softech, Inc.

Kathy Rogers
Rockwell International

30 July 1987

r

Houston, Tex_ 77058-1068 • (713) 488.9490

CONTENTS

==:

e

1.0

I.i

1.2

2.2

3.0
3.1
3.2
3.3

Relevant Quotations

Preface and Acknowledgements
Executive Summary

Background
Intended Audience

Overview of Key Terms and Concepts in a Hierarchical

Development Order
1.2.1 Services and Resources

1.2.2 Objects

1.2.3 Entity Attribute/Relationship Attribute
Models

1.2.4 Stable Interface Sets

1.2.5 Layering
1.2.6 Stable Frameworks

1.2.7 Conceptual Models

1.2.8 Environments: Host, Target, and Integration

1.2.9 Environment Perspectives: Static and Dynamic
1.2.10 Host Environment Stable Interface Sets:

CAIS, CAIS-A, ARTEWG CIFO, PCTE, PCEE

1.2.11 Bare Machine Philosophy

1.2.12 Safety: A Clear Lake Model for a PCEE

Integrating Twelve Underlying Component

Models to Support Computer Systems and

Software Safety

Commonality Perspective of CAIS and PCTE

Desired Characteristics of a Common Systems Services
Interface Set

2.1.1 The Tool Writer's Perspective

2.1.2 Information Management Concerns

2.1.3 System Administrator's Concerns

CAIS and PCTE: The Definitions of System Interface Sets
2.2.1

2.2.2

2.2.3

2.2.4

The Model for Information Management
The Set of Services and Resources

Conventions for Processes, Files,

Relationships, and Attributes

Design Issues in Defining a Common Interface
Set in Ada

Common Environment Architectures

The Model for Information Management

Conceptual Architecture for PCEE
Additional Services of PCEE

3.3.1 Security

3.3.2 Cooperative Autonomy

3.3.3 Process and Information Migration

3.3.4 Heterogeneous Processors
3.3.5 Communications

3.3.6 Transparency of Distribution
3.3.6.1 Unreliable Communications

3.3.6.2 Unit of Distribution

3.4

3.5

3.6

4.0

3.3.6.3 Unique Identification

3.3.7 Transaction Management

3.3.8 Granularity of Representation

3.3.9 Interoperability

3.3.10 Optimizing PCEE Goals

Existing Models and Paradigms
3.4.1 CAIS

3.4.2 PCTE

Considerations for PCEE Guidelines

Conclusions

Recommendations and Summary Discussions

Appendices

A) McKay, C. "A Proposed Framework for the Tools and

Rules to Support the Life Cycle of the Space

Station Program", _0MPASS '87 Conference

Proceedinas, IEEE, June 1987.

B) McKay, C. and P. Rogers. "Life Cycle Support

for *Computer Systems and Software Safety' in

the Target and Integration Environments of the

Space Station Program", SERC Set of Presentation

Foils, June 1987.

Bibliography

r

w

w

il

Relevant Quotations From the Authors of This Report and Related

Memos:

la

.

.

.

.

"Although CAIS is believed to be necessary and

extensible, it is certainly not sufficient for the SSE.

However, it represents very good work by good,

experienced people. The underlying conceptual model is

sound. Any attempt to define an adequate SIS for the

SSE must cause the designers to come to grips,

eventually, with the same issues faced by the CAIS

designers. It would be far too expensive, time

consuming, and risky to ignore this body of work by

'reinventing this wheel'."

"Building-in and sustaining safety in large, complex,

non-stop, distributed systems is not simple. Nor can

this be guaranteed. Success requires depth-of-

knowledge of a number of interrelated subjects..."

"For target subsystems which life and property depend

upon, any att@_pt to Diq_v-back on inappropriate
models and paradigms of _n obsolete o_eratinq system is

q/_i_!!! (e.g., UNIX V.X., BSD4.X etc.)"

"The one apparent certainty determined by the SERC team
and others is that the unit of software distribution

supported by the PCEE must be below the program level
and at least to the task level. Otherwise, the risk of

being unable to sustain the SSP life cycle requirements
for both mission and safety support is unacceptably

amplified."

"Working Definition

Safety: The probability that a system, including all
hardware and software and human-machine

subsystems, will provide appropriate

protection against the effects of faults

which, if not prevented or handled properly,
could result in endangering lives, health,

property or the environment. (CWM, July,

1987)"

iii

=

o "The terms 'secure UNIX' and 'safe UNIX' are temporal

oxymorons unless:

i) all features of UNIX are hidden beneath the

virtual interface set of a strongly typed

language such as Ada and

2) application programmers are denied access to

assemblers and other untyped languages."

V

iv

w

V

Preface and Acknowledgements

This research was sponsored by the National Aeronautics and Space

Administration/Johnson Space Center (NASA/JSC) and conducted

through the Software Engineering Research Center (SERC) at the

University of Houston Clear Lake (UHCL). The views and

conclusions contained in this document are those of the SERC Team

participants and should not be interpreted as representing

official policies, either expressed or implied, of NASA.

The authors gratefully acknowledge the contributions of the other

researchers and support staff on the SERC Team. Also, we are

particularly indebted for the exchanges of presentations,

reports, and ideas with other researchers from:

KIT and CAIS-A Design Team

The ESPIRT/PCTE Design Team of the Commission of

European Communities

Mark V Systems, PCTE Ada* Specification Team

MITRE, CAIS Research Team

CAIS designers from: IBM FSD, Gould, Canadian Armed

Forces, TRW, and others in the CAIS Implementors

Working Group.

The following is a list of trademarks used throughout this

document.

*Ada is a registered trademark of the US Government,

Ada Joint Program Office.
*UNIX is a trademark of AT&T Bell Laboratories.

v

w

Executive Summary

The focus of this report is on Systems Interface Sets (SIS)

for large, complex, non-stop, distributed systems, such as the

Space Station Program (SSP), which incrementally evolve over a

long period of time and have an indefinite life cycle. This
research team is convinced that the traditional division of

issues into host environment versus target environment is

inadequate to scale-up to meet the needs of the SSP. Instead,

the subdivision must be expanded to encompass the issues

integrated across three distinct sets of environmental activities

and responsibilities:

Host (Where software for the target environment is

developed and sustained.)

Target (Where the executable versions of the software

developed in the host environments are to be deployed

and operated.)

Integration (Where the configuration of the current
target environment baseline is controlled. This

environment is responsible for the test and integration

plans used to interactively advance the target
environment baseline with approved changes in software

emanating from the host environments. This environment

is also responsible for controlling interactions with

the target environment to maximize safety during

emergencies.)

All three environments have requirements for User Interface

Sets (UIS) and System Interface Sets (SIS) where the UIS refers

to the human-system interfaces and the SIS refers to the

interfaces of the application software and command language to

the underlying system software and hardware resources. Although

the requirements for the UIS and SIS have some key differences

among the three environments, an integrated perspective reveals a

strong core of commonality which can and should be exploited to

enhance the life cycle management of SSP:

complexity

safety and quality for both systems and software
cost effectiveness for both systems and software

technology transfer into other applications to enhance
productivity, sustain safety, improve quality, and

improve cost effectiveness.

The SIS of the SSP was selected as the focus of this study

because an appropriate virtual interface specification of the SIS
is believed to have the most potential to free the project from

four life cycle tyrannies which are rooted in a dependance on

either a proprietary or particular instance of:

vi

Operating Systems
Data Management Systems .

Communications Systems
Instruction Set Archi-
tectures

The SIS allows tools, rules, application software, test

software, command language scripts, etc. to be developed/acquired
on a foundation of the virtual interface specifications rather

than on the physical interface specifications of the underlying
operating system, etc. Please note that this research team is

convinced that the avoidance of these four tyrannies is an

absolute requirement if the life cycle goals of the Space Station

Program are to be accomplished under the currently anticipated

constraints of: adequate availability of appropriately qualified

personnel, support of intended missions, budgets, and schedules.

Functional requirements are the primary drivers in

constructing host environments. That is, resources are

configured and controlled to maximize the productivity of

computer systems and software engineers, programmers, and

management in the phases and activities of developing and
sustaining software for the target environment. Nonfunctional

requirements (i.e., constraints on the implementations of the
functional requirements) are far less of a driver in the

establishment of requirements for the host environment's UIS and

SIS. For example, the host SIS typically exists in an earth-

based environment without stringent requirements on tightly
constrained real time operations; fault tolerance; limitations of

electrical power; volume limitations; etc. By contrast, the SIS

of the target environment must be strongly influenced by the

nonfunctional requirements imposing constraints upon: real time

deadlines, fault tolerance, power and volume availability, etc.

The SIS of the integration environment is driven by a balance of
functional and nonfunctional requirements which allow it to

interact with the target environment for performance monitoring;

reconfiguration; on-orbit integration to advance the target
environment baseline; symbolic debugging and critical control

support of safety during emergencies.

Although the UIS is not the principal focus of this study, a

few observations may be useful. For example, the UIS of the host
environment should emphasize functional requirements to enhance

programmer productivity. This implies an emphasis on: syntax-

directed, template-driven editors; window management; graphic
design aides; and other enhancements for professionals who

develop and sustain software. By contrast, the UIS of the target
environment should be optimized not for software professionals

but for users and mission specialists who desire a natural

interface to their application domain. Similarly, the UIS of the

integration environment provides needed support for command

language querying and interaction with system components of the
target environment under normal and emergency conditions.

vii

To understand the issues of both the unique requirements and
the commonality requirements of the SIS among the three
environments, two macroscopic perspectives are useful. The first
perspective is the "static" viewpoint which encompasses all host
environment phases and activities from systems requirements
analysis up to and including the preparation of the executable
versions of the software which are to be deployed and operated.
Tool builders/acquirers typically have this perspective. The SIS
of the CAIS is strongly influenced by this perspective.

The second macroscopic perspective is the "dynamic"
viewpoint of what happens during the execution of programs. This
is where the subset of the SIS requirements described in CAIS
should be augmented both by complementary extensions needed for
the SSP and, of even more importance, by the dynamic requirements
of a Portable Common Execution Environment (PCEE) capable of

maximizing the ability to sustain safety while fulfilling mission

requirements in a distributed system with non-stop components.

For example, are there enough resources in the execution

environment to handle peak workloads and safety critical

emergency conditions? Can safety be sustained and meet mission

requirements when certain classes of faults are encountered,
etc.?

Please note that whereas static viewpoints pertain primarily

to the tools and rules of the host environments, dynamic

viewpoints must cross all three environments. That is, whereas

the SIS-based tools and rules for developing and sustaining

software are often uniquely located in the distributed host
environments instead of target environments, execution issues

cannot be unique to the target environment for at least two major

reasons. First, verification issues including: testing, quality

assessment, simulation, and emulation (all of which require
execution in the host environment) must take place to an

appropriate degree before code can be trusted to be transitioned

through the integration environment into the target environment

for deployment and operation. Second, new tools and rules are

likely to be needed throughout the life cycle of the host

environment. These tools must be developed and executed in the

host environments to be effective. Thus, although tool builders

and tool configuration managers are likely to emphasize a static

viewpoint in describing the UIS and SIS of systems such as the

SSP; mission administrators, specialists, operators, users,

safety engineers, and quality managers are likely to emphasize

the viewpoint of the dynamic aspects of the three environments.

This report recommends the adoption of CAIS as an extensible

baseline for the SIS of the host and integration environments of

the SSP. However, the reader should note that the SIS

requirements of CAIS strongly reflect the predominantly static

viewpoint of tool builders and tool administrators. As such,

they are only an extensible subset of the overall SIS

viii

L
requirements needed for SSP. This report further recommends that

a definition and appropriate test bed support be established as

soon as possible for a Portable Common Execution Environment

(PCEE) that reflects the execution environment requirements of

activities which are unique to the needs of a particular

environment as well as those which are integrated across the

three environments (i.e,, the PCEE must be both tailorable and

extensible.) In particular, recent SERC research which has

produced the "Clear Lake Model for Life Cycle Support of Computer

Systems and Software Safety in the Target and Integration

Environment of the Space Station Program" has identified

requirements for a "safety kernel" execution environment composed

of a minimum of 12 highly interdependent models of key components

underlying a PCEE such as: management of distributed, nested

transactions; management of unique identifications for objects,

transactions, and streams; dynamic, multilevel security;

redundancy management; etc. The requirements for the high degree

of interactions and interdependencies among these 12 component

models which underlie the SIS of an execution environment are not

incompatible with the less stringent requirements that emerge

from the more static viewpoint of tool builders and tool

administrators proposed in the SIS of CAIS. However, since these

additional requirements are clearly issues-at-risk on the

critical path of major SSP phases and components and since none

of the test bed activities now underway are specifically focused

on these issues, appropriate action is needed soon.

Chapter 1 of this report provides: background and overview

information with a set of working definitions and explanations of

key terms and concepts used throughout the report. Chapter 2

focuses primarily on the static perspective of CAIS and PCTE

activities. Chapter 3 focuses primarily upon the dynamic

perspective of a PCEE. Chapter 4 provides a summary and

recommendations. Appendices and a bibliography are attached to

further clarify issues addressed in the report.

ix

1.0 Background

This report is based upon the lessons learned from:

Reviewing and interacting with the development of the

current CAIS (MIL-STD 1838)

Interactions with other designers proposing distributed
versions of the CAIS

Interactions with the design team now evolving CAIS-A

Interactions with the design team of the Portable

Common Tool Environment (PCTE)

Interactions and participation in the evolution of the

Ada RunTime Environment Working Group (ARTEWG) Catalog
of Interface Features and Options (CIFO)

Development of the Clear Lake Model for Distributing
Entities of Ada Programs

Development of the "Clear Lake Model for Life Cycle

Support for 'Computer Systems and Software Safety' in

the Target and Integration Environments of the Space
Station Program".

i.I Intended Audience

This report should be of use to at least the following groups:
• All NASA offices concerned with computer automated

systems. In particular, NASA SSP offices from Level A

and Level A' down to the offices administrating SSP
test beds.

• SSE contractors, management, and users

• TMIS contractors, management, and users

• DDT&E contractors, management, and users

• PSC contractors, management, and users

• SSP international partners, contractors, managers and
users.

1.2 Overview of Key Terms and Concepts in a Hierarchical

Development Order

1.2.1 Services and Resources:

Service: Work done or duty performed for another or

others (Webster's Unabridged, 1987)

Resource: Something that lies ready for use or can be

drawn upon for aid.

A supply of something to take care of a need,

e.g., coal (Webster's Unabridged, 1987)

1

1.2.2

Discussion: As used in this report, the word "service"

conveys a sense of "active" work performed
whereas "resource" conveys a sense of

being "passively" available for use.

Object:

Any logical or physical entity with an abstract

specification which answers the following questions:

• what services and resources are provided or

consumed by the object

• how well are they provided

• under what circumstances are they provided

(See Figure 1-1)

Discussion: This abstract specification can be

considered to provide a "virtual

interface" to the object• From the
perspective of users, the abstract

specification also provides the "one way
in/one way out" for the object• Since

objects are intended to communicate by
messages, the virtual interface can be

used as an inventory of the message
requirements. Abstract specifications are

always to be separately compilable from

the implementation part of the object if

an implementation part exists.

The implementation part, if it exists,

hides all design decisions regarding the

object• Trade-offs between: hardware and

software, algorithms and data structures,

and traditional versus AI design

techniques are encapsulated inside this

object implementation. Other information

which may also be hidden inside the
implementation part may include knowledge

that this is a complex object which is

composed of several other objects• For

example, a component written in assembly

language can be encapsulated inside an

object body. Since users of the object
can only see the abstract specification,

access to the code segments and data

structures of the assembly language
routine would be hidden from the users and

controlled inside the implementation part.

2

abstract

specification

implementation

v

Communicate

with messages
via abstract

specifications

abstract

specification

implementation

object 1 object 2

E

FIGURE i-I TWO COMMUNICATING OBJECTS

3

1.2.3 Entity Attribute/Relationship Attribute Models:

Represent domains of interest in ter_s of:
• the entities within each domain

• relevant attributes of these entities

• the relationships among the entities

• relevant attributes of these relationships

Discussion: Although the Entity Attribute/
Relationship Attribute (EA/RA) model was

introduced by Dr. Peter Chen in 1976 as a

data base modeling approach which captured
additional semantic information (meta-

data) beyond the techniques of
hierarchical, CODASYL and relational data

bases, the EA/RA approach was quickly

recognized for its power and parsimony.

Its use has now spread into almost the

entire spectrum of computing.

When objects are mapped to entity

representations, the approach is

particularly powerful. Since each object

embodies the software engineering

principles of abstraction, modularity,

information hiding, and localization, an

EA/RA model can be used to passively

represent a design structure depicting the

relevant objects, their relationships, and

the key attributes that represent the

design. Analysis for completeness,

consistency, etc. is greatly facilitated.

Also of great importance is the ability to

leverage the rich semantic information

captured by the model to understand the

potential effects of proposed changes to
the baseline design. The model is also

bringing discipline and order to what had

previously been a collection of ad hoc

approaches and guidelines (typically
insufficient) for developing and

sustaining on-line schemas, subschemas,
and dictionaries.

Two more recent developments which hold

great promise for future computing systems
include:

• the use of on-line instances of

EA/RAmodels to actively enforce
strong typing, integrity controls,

and multiple views for access and
context control•

w

the draft ISO (International

Standards organization) standard

for IRDS (Information Resource

Dictionary System). This standard
permits on-line instances of EA/RA

models to be used among

heterogeneous computing systems of
different vendors.

1.2.4 Stable Interface Sets:

Used to represent and sustain baseline control of an

interface set. They must satisfy three requirements:

I. From the perspective of a complete inventory,

an SIS is a virtual interface set resulting

from the union of all abstract specifications

of the objects designed to be visible at this

interface. (That is, the total collection of

all the services and resources to be provided

at the SIS, how well and under what

circumstances.)

2. From the perspective of any given object

within an SiS regarding its relationship to

other objects in the SIS, there should exist
a formal model in EA/RA form describing:

• the "need-to-know" and "right-to-know"

visibility among all objects of the SIS
and

. the grouping of objects into discreet
sets of services and classes of services

within each of the sets.

3. From the perspective of external objects
outside the SIS, a formal model in EA/RA form

is used to describe:

. exactly what sets and classes of
services are to be visible to the object

• the protocols (necessary steps) and
access control to be imposed upon the

external object and its use of the
services and resources provided at the
SIS.

(See Figure 1-2.)

5

m

w

U)
m

(/)

G)
m

.Q

m

Ogle

<1:

>,
im

mmm

BUell

.Q
li

(n

m

m

2::

0

>
IIm

(.1
(1)
Q.
u_
Im

4)
a.

0
q_

C
4)
>
C

m

4)
(n

tom

0

_n
¢)

u_
m

(.1

_) I.-
W 4)

(.1
4) ---

m

4)

it- W
0 U)

m
m

¢_1 rJ

(n

m

v

m

V

U)

U)

6

I

.r.d

0')
C

qlm

Q.

c_
"0
(1)
L-

I

7

w

w

m

w

m

4)
"0
gl

U)

:)
0

u_emll

0

0

I

0

C
0
0

0

IJJ 8

0

4)

o

I

-,-I

m

1.2.5 Layering:

Refers to a hierarchical structuring approach featuring

enforced access to the services and resources of each

layer throuqh the laver!s _Dterface _pecifications.

Thus an entity in layer "N" which is authorized to

access a service of layer "N - i" can only access the

service by complying with the protocol requirements

associated with the interface specification of the

service. For baseline control, systems should be

constructed in a hierarchy of layers where each layer

is sustained as a Stable Interface Set. (See Figure i-

3.)

i

i

w

m

w

9

u

i

u

=_.

w

w

m

= ,

w

w

w

w

Ct)
I-,
111

Ill
0
,,II
EL
rr,
I,i,I

m

Ill
,,.,,I
n,i

I-,
Ct)

O

I#1
I.-

I11
.J

.,,..I +

_Z
O0

II

|

I

Fq
Fq

r-q
I I
F-q

10

I
|

I

I
|

._Z
o')

I

¢'3
I

f--I

@
14

-,.4

w

m

w

1.2.6

Discussion: Layers should not be confused with the

structuring approach known as "Levels"

(e.g., as used in UNIX). Levels also
group services and resources into

associated sets of functionality that are

described by interface specifications.
However, no automatic enforcement of

access via the interfaces is typically
available. Furthermore the protocols

generally allow a service in level N to be

accessed from anywhere (as opposed to
restricting access to a few authorized

entities in the adjacent layer). Because

the interface specifications for levels

are usually provided in an untyped
language, any enforcement of structural

integrity must rely strongly on off-line

guidelines, practices, and shop standards.

Used properly, layering contributes to

firewalling of faults that occur within a

layer. Upper layers are often able to

compensate for faults which occurred in

lower layers. The successive layers of

thrust explicitly reflect both the

functional architecture of the system and

the differing degrees of criticality

associated with the functionality of the

layer. Security, integrity, and
reliability are three critical concerns

that can now be addressed appropriately
within each layer.

Stable Frameworks:

The three requirements for Stable Frameworks (SF) are:

i. Within any layer a collection of closely related

objects that should be regarded and maintained as

a unit shall be identifiable by unique attributes•

2. The collection of objects within a layer which are

to be identified as a unit via the unique

attributes can be treated as "strongly typed".
That is, a complete determination can be made of

legal values and legal operations for SF's of this

type.

Within any layer, a formal model in EA/RA form can

be used to represent the relationships of the

strongly typed SF's to other strongly typed SF's

both within and external to the layer.

(See Figure 1-4.)

•

ii

,--...

w

3z
GO

(0

o

Q)
E

It.

.0

O0

!

o)
It.

12

=

1.2.7 Conceptual Models:

At a level of abstraction appropriate to facilitate

understanding and communication among the intended

audience, the conceptual model is an invaluable aid to

explain the level-of-detail relevant to a level of

decomposition of the major constituents of the solution

or problem space under review. The current level's

constituent entities, attributes, relationships to

other constituent entities in the decomposition, and

the attributes of these relationships are made visible.

The transformations that have mapped this level from

the previous level of decomposition are traceable. A

foundation is also laid which will render the

transformation to the subsequent level traceable.

(Figures 1-5 and 1-6 could be augmented with

appropriate documentation to serve as examples.)

= -

m

m

13

w

m

w

w

TLUO 5CEnRRIO5 FOR

55P EnUiRonmEnT

in 2000+ R.O.

X X 0

x ® x x /-_ o o
_ _ _ o o

HOST
EnUIRonrnEnTS:

• OEUELOP

• 5USTRIn

InTEGRRTIOn
EnUiRonmEnT:

• CONTROL OF
TGT. EnUIR.

BRSELInE

• lnTEGRRTIOn
UOU FOR nEXT
BRSELInE RnO

TEST
InTEGRRTIOn

PLRnS

FIGURE I-5 THREE SOFTWARE ENVIRONMENTS

TRRGET
EnUIROnlTIEnTS:

• nEPLOV

• OPERRTE

14

w

w

w

L

LU

I--"

¢rJ
_', "0

0
,=4#=_

0 ¢--
m

"- E13_
¢.-

-_ o
om

om

¢'-"
o LU
¢rJ

-,'-"lb.

0

i ¢r_

- GO
r.=.l

¢¢3

°_

=...
0 e'm"

0.. ¢r3
:_ "0

¢x3

0 0
'Nl.m,,

mb

0 '--

,.ik=d

¢t)

¢r3

I----

X I

I.--I
¢=:1

I
!

I
!

15

D

¢D
L

"0
L

¢¢s
"1-

¢,-.
(D

F:
¢-
0
Ik=,,,

gm

¢,--
LU

0
"!"

,,W

¢D
E
¢.-
0
L

_lmm

¢...
LU
¢.-
0

l_mmm

L

e"
mmm

=1

¢--

E
0
lkm

mHm

e,,,-
LLI

L--

I----

1.2.8 Environments: Host, Target, and Integration

Host Environment

• Software Life Cycle Only: Software for the

Target Environment is developed and
sustained in this environment.

Deliverables for the Target Environment

are provided to the Integration

Environment which is responsible for

installation, integration, and operation.

System Life Cycle: Software, hardware, and

human-system interfaces are developed and
sustained in this environment.

Deliverables for the Target Environment

are provided to the Integration

Environment which is responsible for

installation, integration, and operation.

Note that the Software Support Environment

(SSE) of the SSP has system life cycle

responsibilities in spite of its use of

"software" instead of "systems" in the
title.

Target Environment

• Software Life Cycle Only: Software developed
in the Host Environment and commands

emanating from the Integration Environment

are deployed and operated here.

System Life Cycle: (A similar distinction

should be made as in the discussion of the

Host Environment.)

Integration Environment

• Software Life Cycle Only:

• Accepts software from the Host Environment

and performs any final verification,

validation, and quality assessment

activities prior to installation and

deployment in the Target Environment•

Responsible for administration of test and

integration plans to interactively advance

the Target Environment baseline.

Controls and monitors operations in

simultaneous support of both mission

requirements and safety requirements.

. Controls and monitors the current software

16

u

1.2.9

baseline in the Target Environment during
both normal and emergency operations.

System Life Cycle: (A similar distinction

should be made as in the discussion of the

Host Environment.)

Discussion:
The authors are convinced that, for large,

complex, non-stop, distributed systems
such as the SSP,

• the traditional division of issues into

host and target is insufficient. The
division into the three sets of

environments described above is critical

for the life cycle.

• Both the Host (i.e., SSE) and

Integration Environments must support

the systems resources of the Target
Environment rather than Just the

software issues• Specifically, the

traceabillty and management of all

software, hardware, and human-system

interfaces throughout the life cycle

must depend upon an integrated approach
to the on-line representation and

control of these baselines in the target
environment.

Environment Perspectives: Static and Dynamic

Static: Encompasses all Host Environment phases and

activities from systems requirements analysis
up to and including the preparation of the

executable versions of the software which are

to be deployed and operated in the Target
Environment.

Dynamic: Encompasses all that happens during the
execution of commands and executable versions

of programs.

Discussion: Tool builders and acqulrers typically

emphasize a static perspective of the

functional requirements of the Host
Environment. By contrast, the

simultaneous support in the Target

Environment of both mission requirements

and safety requirements is impossible to

develop and sustain without a dynamic
perspective that considers the balance of

functional and nonfunctional requirements.

17

u

w

1.2.10

In this report, the authors recommend a

Portable Common Execution Environment

(PCEE) be defined as a complement to the

more statically influenced standards for
System Interface Sets such as CAIS

(Common APSE (Ada Programming Support
Environment) Interface Set) and PCTE

(Portable Common Tool Environment). (See
Figure 1-5 and the following discussion in
Section 1.2.10.)

Host Environment Stable Interface Sets:

ARTEWG CIFO, PCTE, PCEE
CAIS, CAIS-A,

CAIS: (MIL-STD 1838) Common APSE Interface Set.

Provides a standard for the Systems
Interface Set of host environments that is

intended to promote transportability and
interoperability. A primary focus is to

facilitate this promotion by providing
appropriate support at the SIS for tool
builders.

CAIS-A: Now being defined as an intended successor

to CAIS. Specifically, it is intended to

address many of the deferred subjects in
CAIS such as distribution.

ARTEWG CIFO: Ada RunTime Environment Working
Group Catalog of Interface Features and

Options. The ARTEWG is recognized and

partially supported by the Ada Joint
Program Office with a charter to address

Ada runtime environment issues. Subgroup
3 (currently chaired by one of the

authors) is responsible for evolving CIFO.

PCTE: Portable Common Tool Environment. This

work was sponsored by the Commission of

European Communities. Although the work
has many goals in common with the CAIS

work, there are many notable differences

in both goals and results. (Several of

them are described in Chapters 2 and 3 of

this report.)

PCEE Portable Common Execution Environment.

This is a SERC Team proposal to define a

standard for the SSP reflecting the

execution environment requirements which

are unique to each of the three

18

m

w

_ I

_z

1.2.11

Discussion:

environments (host, target, and

integration) as well as those that are
integrated across the three.

The standard should be in the form of Ada

specifications in a Catalog of Interface

Features and Options similar to the slowly
evolving ARTEWG CIFO. The System
Interface Set of the PCEE would be

complementary to CAIS and CIFO but would

have a distinct emphasis on dynamic issues

to maximize the simultaneous support of

both mission and safety requirements in
the Target Environment of SSP. An

essential component of the PCEE not now

addressed in either CAIS or ARTEWG CIFO

would be the command language requirements

to support the Target and Integration
Environment interactions as described in

this report.

Bare Machine Philosophy:

As used by the SERC Team, this concept is based upon
two principal tenets:

Application software should be developed by
professionals who focus on Ada

imp i ementations of solution models where

independent appl ication problems in the

environment require independent solution

models and therefore independent application

programs. The application software

professionals depend upon the underlying

systems software for the runtime management
of all services and resources which are

intended to be sharable among independent

application programs, either initially or in
the future. In turn, the application

programs are responsible for the management
of any services and resources which are

specifically intended to be non-sharable with

other programs.

Systems software should be based upon Ada
implementations which:

• manage sharable services and resources

provided to authorized application

programs and command language instructions

. manage the simultaneous support of both

19

L

w

mission and safety requirements

particularly in the Target and Integration

Environments. Note that if the mission(s)
involve multiple, independent application

problems, then the systems software should

support multiple, independent application

programs (i.e., multi-programming) where
each may have its own balance of

functional versus nonfunctional

requirements. However, the systems

software must simultaneously sustain a

level of mission and safety requirements

at each site that can never allow a lower

priority or less stringent application

program to compromise the mission and

safety requirements either assigned to the
site by configuration control or that is

associated with more demanding application

programs with execution requirements
dependent upon that site.

The two integrated tenets of this concept led to the
term "bare machine philosophy" because both the

application software and the systems software are built

entirely in Ada (to the maximum extent possible) .
Furthermore, the same compiler is used for both. As

shown in Figure i-6, the individual application program
components that are to be assigned to a site can be

compiled and an inventory of their calls for runtime

environment services and resources can be made. (Note

that these calls come from the compilation of both

application source code components and their explicitly
imported application library modules.) Then,

transparent to the application developers, this

inventory of required runtime support is augmented by
consulting the configuration object base to determine

what additional services and resources may be required

at this site. If, for example, "B3 class, multilevel
security" and "no single point of systems software

failure can cause..." are system level configuration
requirements from this site, then this information is

used in conjunction with the above inventory to select

the runtime support library components that are to be

compiled to support the application program components

assigned to this site. (Note that such system level
configuration requirements can and should be

transparent to the application software developers.)

Concluding Discussion: The component models and

paradigms of the Ada language, such as multitasking and

exception handling within independent application
programs, do not map easily or well to the older-if-

2O

w

not-obsolete component models and paradigms of most
current state-of-the-practice operating systems. This

is particulary true for parallel and distributed target
environments. Therefore many compiler producers with

perceived requirements to execute on top of a

conventional operating system have had to devote

incredible talent, energy, and other resources to

produce Ada runtime support that is a compensatory

mechanism for the inadequacies of the underlying OS.

(Attempting to graft silk to a sow's ear comes to

mind.) This practice is not only inefficient resulting

in larger code segments and much slower execution than

necessary, it is also a much greater risk in the long

term for reliability, security, and the much more

demanding aspects of safety• (More will be discussed

about this in Section 1.2.12.) These and other

attributes of the executable code and command language

components can never be any better than the combination
of the:

• compiler,

• runtime library, and
• execution environment

can support• The authors of this report, the SERC

team, and many other researchers of computer systems

and software engineering with Ada believe strongly in

the Bare Machine Philosophy as the best chance for

simultaneously supporting both mission and safety

requirements in large, complex, non-stop, distributed

environments which evolve incrementally over a long

development period and must be continuously sustained

over an even longer life cycle.

1.2.12 Safety: A Clear Lake Model for Integrating Twelve

Underlying Component Models to Support Computer Systems

and Software Safety

Safety: "The probability that a system, including all

hardware, software, and human-machine subsystems, will

provide appropriate protection against the effects of

faults which, if not prevented or handled properly,

could result in endangering lives, health, the

environment, or property." (CWM July '87)

Discussion: The simultaneous support of safety and
fulfillment of mission requirements is an

"end", not a "means". For the Space

Station Program, such component models as:

dynamic, multilevel security; tailorable

runtime support environments developed in
Ada; resource pools; distributed, nested

21

transactions; command language interface;

redundancy management; and six others are

regarded by the authors as "means" of

improving the probability of success of

achieving these goals in the target and
integration environments of the SSP.

These twelve component models are highly

interdependent and interactive in their

support of mission and safety requirements
for a Portable Common Execution

Environment (PCEE) as recommended in this

report. Readers desiring additional

information should consult Appendix B of

this report plus the relevant SERC Memo
listed in the Bibliography.

v

22

2.0 Commonality Perspective of CAIS and PCTE

Both CAIS and PCTE are intended to support the execution of
software engineering tools in a host environment. Their goal is

to promote the portability of tools from one software engineering

facility to another and thereby reduce the redundant effort

currently required to develop programming support tool sets. The

source of this redundant effort and the specific goal of both

CAIS and PCTE is the significant variation in the organization

and structure of required system services with which tools must
interact. These variations are so extreme that the effort to

move a tool from one system to another is a significant barrier.

There are enough aspects which require complete revision of the

software that often only a low percentage of the code can be used

as originally designed.

Thus both PCTE and CAIS aim to define what is typically

considered the operating system interface. This interface must

be provided in one form or another on each system which is to

support the common tools, but the effort to provide this
interface is less significant than the redevelopment of the

tools. Even if this were not the case, there are significant

advantages to the commonality of the interface and tools in terms

of the familiarity to the users, and ease of movement among

software developers from one development facility to another.

In the process of defining these System Interface Sets, it

was recognized that to do so requires an implicit model for

information management and conventions on the organization of

system resources, e.g.:

the organization and naming of files and devices,
how to store and reference file and device characteristics,

and

whether and how to support explicit identification of

relationships between files, etc.

In fact, it was uniformly decided that this issue demanded a new

perspective beyond what has been traditionally provided. Both

PCTE and CAIS adopted an information management approach referred

to as Entity Attribute/Relationship Attribute or EA/RA modeling.

Developed originally for data base management, EA/RA is a

generalized approach to information management which was chosen

for its potential in providing management control over complex

and evolving systems. It can be used not only to organize and

provide control over files, but over other resources, such as

devices, network facilities, users and user groups. As discussed

in Chapter I, it can also be used to support stable interfaces,

layers, and stable frameworks.

23

w

m

w

It is quite significant that a common approach is being
adopted and made a central part of the services provided.

Equally significant, although beyond the scope of this

discussion, is the approach to and support for the evolution of

information management conventions. This holds promise for

allowing technology development without outdating existing

systems.

In addition to addressing information management, it was

necessary to define some significant aspects of program execution

in the host environment. Although PCTE and CAIS differ, it is

equally a part of their specification to address this issue. It
is in this area that PCTE and CAIS fall short of providing a
Portable Common Execution Environment that meets the needs of the

Space Station Information System. It is their limited focus on

tool support and the necessity to remain open to a wide range of

commercial systems that dictated their approaches. The

consequence is limited application of their process management

approaches to the widely distributed, highly reliable

applications present in the space station.

2.1 Desired Characteristics of a Common Systems Services
Interface Set

Both CAIS and PCTE consider a number of desired

characteristics, from a number of different perspectives, in the

design of their tools interface sets. One such perspective is

the tool writer, i.e., what does the tool writer need, beyond the

Ada language, to write portable tools. A different but equally

important perspective is that of the project information manager,

i.e., what management controls should be provided, for users

through the tools, for use by tools, and built into common tool

services. The last perspective is that of the system

administrator, taking a systems-level perspective of collections

of software development facilities and of collections of
resources within a development facility. In this case the

concerns are those of interaction between systems, the exchange

of data, and of coordination of resources, as well as how to
allow for distribution and manage such distribution. These

different perspectives will be considered in turn, prior to the
discussion of the contents of the two interface sets.

r

_r

24

w

z
w

r

E

2.1.1 The Tool Writer's Perspective:

The writer of a tool is the first source of requirements,

and perhaps the easiest to satisfy. The requirements are in the

form of services and resources necessary for the tool writer to
accomplish the task at hand and provide the user with a

"friendly" interface. These services are by now quite familiar.

UNIX is an excellent example of focusing on these requirements

and providing a flexible and powerful set of services. (Only the

introduction of high-resolution, bit-mapped screens, pointing

devices for input, and the surrounding windows-oriented

user-interface demand new attention). For the following

discussion the required services are partitioned into two areas

of concern: process control and external interactions.

Process control is a concern for two reasons. First, the
tool writer needs to know about the execution context of a

program, what are the predefined attributes and how these might

be changed. Both PCTE and CAIS equate unit process execution,

with associated scheduling and resource control, with Ada program

execution. Thus, the model for process control provides the

framework for answering the context of program execution.

Of further interest, however, is how to start up other

processes and to coordinate their execution; how to communicate

with other processes if necessary; and how to synchronize with

the execution of another process. These services are needed

principally to support multi-user systems and to support

background activities and contexts for single users. They are

used more by the command language processor or multi-user
executive than the individual tools, but still must be a part of

the common system services.

Neither PCTE nor CAIS are looking at process control

facilities to provide parallel execution on multi-processor

configurations for the purpose of improving the performance of
tools. In this and other respects their process control

facilities are very traditional and limited in their ability to

support complex systems of cooperating processes.

The second area of concern is that of external interactions.

A tool needs to know about its coordination with the user, in

terms of inputs, messages, options in tool execution, user
break-in possibilities, logs, and listings. A similar concern is
its coordination with the data base (files) of design

information, source, and object code. A common interface set

must provide a common set of services and resources to support
these interactions.

Altogether, the tools writer's needs are generally met by

any standard operating system. The requirements are not new and
can be easily met in a basic form. The nature of their basic

25

definition and interaction, however, depends on the other

requirements of a system interface set covered in the following
sections.

i

w

2.1.2 Information Management Concerns:

Most significant in altering the common conception of system
interface sets is a recent focus on providing more powerful

information management facilities. The typical concerns here are

those of configuration control, ensuring data base integrity,

information security, and access control. As a preface to this

discussion, it is important to note that the whole concept of

information management has taken on new meaning with the
introduction of the Entity Attribute/Relationship Attribute

(EA/RA) model. Now information management is frequently
conceived of and understood in terms of entities, relationships

and attributes. Thus while these concerns have been recognized

as significant in the past, there is now a common mechanism to

support their definition and raise the common perception of the

need for their support. The draft ISO standard IRDS (Information

Resource Dictionary System) provides a standard way of describing

EA/RA models through schemas, subschemas, and dictionaries that

can be shared among heterogeneous computing systems.

Configuration control of systems is the management of strict

naming of components, baselining of stable versions, and control

of updates. The requirements on a system interface set are to

support these management activities and to provide the means to
enforce management conventions. The EA/RA model offers a way to

explicitly identify and trace relationshlps between components

and to identify the distinguishing characteristics of components

and their relationships. These have been recognized as

significant, if not invaluable to configuration control. In

comparison with existing file systems, in an EA/RA data base more
semantic information about the files (i.e., their relationships

and attributes) is explicitly available. In addition, the type

and extent of information stored would be tailorable on a

per-project basis.

Integrity control is the assurance o_ da stable and
coordinated data base despite procedural (human n software) and

hardware failures. With project data bases growing in size and

complexity, this is becoming a significant issue. It is
considered a significant weakness of UNIX. The techniques used

consist of ensuring sufficient information has been saved and

marked before an operation has started to enable returning to

that information should the operation fail. For a common

interface set the requirement is for a very localized version of

this, commonly identified as transaction services. Various

levels of complexity can be supported up to the level of

distributed, hierarchically-nested transactions. PCTE provides

26

.m-

m

u

this full extent, while CAIS-A appears to be aiming at only basic
transaction services.

Information security and access control are further

requirements on defining a common interface set. There are two

perspectives which may be imposed depending on the application of

the tool set. The most common is to provide for group and

individual ownership and access rights to files, thus providing

partitions within a common data base. The principle purpose of

such partitions is to protect against accidental destruction and

casual search and to provide ownership responsibility of files

which must be maintained, archived, and limited due to storage

and other restrictions. The second perspective consists of

formal security, logical if not physical isolation of

information, and protection from active attempts at unauthorized

access. This latter perspective is only now being considered

feasible within a typical multi-user computer system.

2.1.3 System Administrator's Perspective:

The final source of design requirements is the system

administrator. There are two major concerns which the system

administrator recognizes: interaction between systems and

distribution of resources within each system. In each case there

is a wide range of issues which have been raised, with a

corresponding range of complexity in addressing them in the

definition of the system interface set. Unlike the tool writer's

perspective, which is well understood, and even the manager's

perspective, which is more recent and less understood but with a
certain current consensus, the system administrator's perspective

is not fully appreciated and the related issues are without full
consensus.

The principle issues in providing for interaction between

systems are of exchanging files and exchanging project data bases

between systems which may not be compatible in terms of their

host computer, operating system or other factors. A related

concern is for supporting backup and archival of data and

ensuring that a future system upgrade or replacement will not
invalidate the data which has been archived. A typical

resolution involves at least a common external form for data

storage and for representing the relationships and attributes

within a project data base.

The CAIS-A project team has clarified that support in this

area is a middle ground between the application level and media

levels. CAIS-A will not attempt to define application standards

for representing application data systems, nor will it require

that an unknowing program be able to open any given file and

interpret its contents. At the other extreme, CAIS-A will not
define media standards for storage devices. The support left in

27

w

w

u

__I

i

t

i

the middle is the definition of a common external form, which all

CAIS implementations will recognize, for the "meta-data-

(relationships and attributes of the data base) and for the basic
representation of data within a file.

To explain this situation further, the issues here are

closely related to the issues of interoperability between tools

whether they are co-located, concurrently executing, or even

different generations of the same tool. Interoperability refers
to the ability to exchange information, where information is not

only the data involved, but also the proper interpretation of

that data. The difficulty is that information is interpreted at

many levels in its lifetime. Useful exchange of information
requires standards of representation at all levels. Consider the

following:

Within the program, the design dictates how the information
which is to be worked upon will be reflected as a collection

of certain data declarations. These alternatives in

representation are at the highest level and are dependent on

the application domain. As an example, the definition of an

intermediate representation for an Ada program is an

important design characteristic of Ada compilers which
differs substantially in current implementations.

In its representation as data objects in the program, the

information is interpreted by the compiler into a particular
representation in the target hardware which is to execute
the program.

Beyond this, for information exchange, it must be written

out using the standard Ada I/O services. One noted issue in
interoperability is that current standards for external

representations do not provide any information about the
data structures which have been written out

(non-self-descriptive file formats). The information cannot

be retrieved without implicit knowledge of these data

structures and the application which created them.

Even without consideration for a self-descriptive file

format, at this point, the compiler, operating system and

physical media all define individual aspects of

representation. These individualistic aspects generally

prevent any other combination of compiler, operating system,

and device from accessing the information, even when given
the original program.

It is recognized that true exchange of information requires

a staggering amount of standardization, and that a common system
interface set cannot solve all of the problems. The system

interface set should, however, define the middle ground between

the application standards and implementation details, such that

28

u

m

w

tools developed at different sites and at different times will

agree on the writing and reading of the basic data structures in
the Ada language.

The other aspect of the system administrator's concerns is
that of managing a distributed set of resources within one

system. At one extreme, this concern has simply been dismissed

as being entirely an implementation concern. That is, there is

no need to consider these problems because distribution can be

provided fully transparent to the tool writer; there is no

impact on the definition of the interface, only its

implementation. The alternative is to recognize the possibility

of distributed resources and provide some support to the

implementation of the interface set.

From this latter perspective, the most important feature is

the incorporation of standard attributes and relationships which

can be used to provide an information management model of the

resource distribution. This can be used to allow tracking of

resources (e.g., what data is where, what processes are where,

etc.), network administration and fault recovery. Similarly,

attributes and relationships can support distributed data

management with replication as needed and coordinated updates.

m

m

2.2 CAIS and PCTE: The Definitions of System Interface Sets

The following sections will discuss in greater detail the

contents of CAIS and PCTE. For our purposes, a system interface

set will be considered to consist of three parts. We first look

at the foundation, the model for information management. In both

cases this is EA/RA. The bulk of a system interface set

definition will be actual services provided, which are discussed

next. The services are organized in terms of EA/RA management,

process control, and external interaction services. The next

section considers the conventions and predefined aspects which

all implementations must provide. The final consideration is of

general design issues in defining a common interface set in Ada.

These last considerations are primarily drawn from the effort to

develop an Ada specification for PCTE.

2.2.1 The Model for Information Management:

This is the area of the most technical innovation for system

services, and one for which PCTE and CAIS have chosen the same

approach. The basic system supports the establishment of a

logical network of "entities" connected by "relationships". The

most fundamental application of the model for information

management is as a replacement for the traditional file system.
This serves as a good example for comparing differences and

similarities with an existing model.

29

m

=

_j

m

Traditionally, file systems have been organized as a simple

"flat" partitioning of the available file storage space, or as a

more flexible hierarchical system. In the case of a hierarchical

system, files are grouped into directories, similar to the

partitions in a flat system, but which may also contain

sub-directories. Sub-directories contain other files as well as

other sub-directories and so on in a hierarchical fashion. Note

that because of the hierarchical organization, access to a file

is no longer a matter of specifying the one partition which

contains the file. In this case, a "root-directory" (or

top-level directory) as well as the nested set of sub-directories

must be specified. This is known as a file's pathname.

In an EA/RA data base, a file is one type of entity.

Relationships are used to group and connect them. A directory

would be a different type of entity used solely to connect

several related files. In this system, a file can have several

relationships to other files and have several relationships

connecting to it. The system is no longer a simple hierarchy,

but a highly interconnected nest of files and relationships (see

Figure 2-1). Each such nest would have a unique starting point,

corresponding to the root directory. For the EA/RA data base,

the root would have specific attributes associated with a

particular user or group using the file-system.

w

w

w

3O

ltCZ¥

"STRUC'I'URAL 1LqODR*'
8ZNZLAR _ DZRRCTSDR¥

FZLB NODIm

iL
m

• . m

w

IIgER AND DOT JU_ PNF, D_XNIID NIU2'XOtISHXPS.
DOT 8ZNPLY _ _]DqTZTY WZTH & mp_*, BIT_ZTT.
AN Bt_Z27 HAY ILILVB 8BVZRAL DO_ RU,,ATZOHflHZP8 COHNBCTBD /TON IT,
B_JL_ OELY _ CCUllC'LqSD TO IT. 11 2_JPZCAL HZBL_R_ZCAL ZPOIU(,

:GO'P 2_18
SX,t_PT.x OF _t/'lm COtlCBPI'8

ORIGINAL P_GE !S

OF POOR QUALITY

w

u

÷/1s/e7
11t12tO0

4/30/117
ZSt21t00

S/1/87
8:42:00

8tSSxO0

2.3

w

&
b
0
d

03B_'T NODOI,Z
• "B:l_' BXI_[/TABr, B
CONPIMUt
_Ll_ZOm O.

m

!

FIG_E 2-1b

E_LE OF EA/_ CONCEPTS

• 1 ORIGINAL PAGE .IS-
OF POOR QUALITY

m

m

w

w

Y

While it may appear to lead to enormous complexity, properly

managed, the file system will reflect the logical relationships

which exist among the files, and these relationships will have
been made explicit and visible. The system does not change the

requirements for accessing a file. As for the hierarchical

system, a "root" starting point, and pathname for traversing the
various relationships are all that is required. If appropriate

or necessary, a hierarchical system can be directly represented

as a subset of the more general EA/RA capabilities.

Both PCTE and CAIS-A will provide an enhanced capability in

which the various entities and relationships are strictly

classified (also called strongly typed, but this differs somewhat

from the strong typing of programming languages). For these

systems, the different entity types will be distinct, ensuring

that only proper operations are performed. Thedifferent types of

entities which may be managed by the system are open to user

extension. For example, sets of objects and their relationships

along with their respective attributes can be assigned a common
attribute suffix to form a Stable Framework (SF) as discussed in

Chapter i. Now the SF can be addressed as a strongly typed

object and, in turn, can exchange messages with other SF's just

as if they were single instances of a strongly typed object.
Both CAIS-A and PCTE will allow for system evolution as new

entity types and relations are derived from existing ones and

designed to co-exist.

CAIS and PCTE diverge in their application of the EA/RA

modeling. PCTE provides these services as a replacement for the
typical UNIX file system, with entity typing used as a way to

distinguish between different types of files in the system. CAIS
takes the modeling further, applying it to process management and

access control, and in the case of CAIS-A, to peripherals and

distributed resources within a system.

2.2.2 The Set of Services and Resources:

with the EA/RA model as a basis for information management,

a number of common operations, which would be duplicated for each

type of entity in previous systems, can be consolidated under the
heading of EA/RA management. These services provide for the
creation and deletion of entities (called nodes in CAIS and

objects in PCTE), as well as connecting the entities into the

system through relationships. For each entity type and

relationship type there are a number of required and optional
attributes which may be speclfied at the time of entity creation

and connection respectively. While PCTE and CAIS-A go about

their EA/RA management in different ways, and PCTE has a more

limited domain of entity types, the basic capabilities are

similar between the two.

32

v

v

w

A second group of services are provided in the area of

process control. Here the standard services of process creation
and termination, including abort, suspend and resume are

provided. Each system has mechanisms for returning results and

for waiting for a process to complete and return results. CAIS-A

has noted the need for separating process creation from actual

startup. Interprocess communication is provided for through

message queues. PCTE provides messageless non-waiting signals.
These services are not significantly different from each other,

each providing a basic multi-process capability. This

multi-processing capability is traditional, however, and as was
indicated earlier, is not appropriate for complex multi-processor

and multi-programming applications. In particular, to represent

an Ada program with one process control block, regardless of how

many separate threads-of-control have been spawned within the

program, is regarded by this research team as a very damaging

deficiency of both CAIS and PCTE. (The reader should remember

that Ada provides dynamic support for firewalling properly
designed tasks. Therefore, the failure of one task need not

cause the program to abort or other tasks to be corrupted.
Designed properly, the failed task can be replaced or a safe

work-around can be effected in a non-stop execution environment.

However by not representing each thread-of-control within the

program with its own process control block in an accountable,

hierarchical relationship to the main program's process control

block, such issues as: interactive symbolic debugging,

reconfiguration, performance monitoring, and interactive safety

support provided by the integration environment to the target

environment become far too difficult to deal with safely.)

The final area of system services is broadly classified as

external interactions. External in this case refers to being

external to .the program (tool) which is executing, we have

already discussed interaction with another process. The other

two aspects are data base (file system) interactions and user
interaction.

Much of data base interaction is now subsumed by EA/RA

management, but there are additional requirements to read and
write the contents of the files. These are handled with

traditional file I/O services. The differences between CAIS and

PCTE are directly tied to their origins. CAIS is intended to

serve principally the Ada language, and so its I/O capabilities

are exactly those defined in the Ada language reference manual
(LRM). PCTE, on the other hand, is explicitly derived from UNIX,

and thus borrows the UNIX I/O services. The Ada specification

for PCTE which is being developed will replace the UNIX services

with Ada's, with slight modifications where necessary for

compatibility. In any case, there is little surprising about

these capabilities.

PCTE has taken, and CAIS-A intends to take, a significant

33

w

step beyond traditional system support in providing transaction

services. Such services are necessary to ensure integrity of the
data base with multiple and distributed processing. PCTE

provides the full capability of distributed nested transactions,

while CAIS-A currently is looking at only single-level
transactions. The reader should note that distributed nested

transactions is the most powerful and parsimonious mechanism

known today for supporting software fault tolerance in parallel

and distributed systems. Single-level transactions, by contrast,

do not allow the full exploitation of parallelism and

distribution in the system and do not support fault tolerant,

non-stop operation.

User interaction is an area of considerable disparity

between CAIS and PCTE, and also between CAIS and recommendations

for CAIS-A. CAIS as it currently stands defines an extensive set

of services for traditional devices, those which are similar to

teletypes and line printers (called scrolling devices), those

which allow direct cursor positioning as on a CRT screen (named

page devices) and those which can be partitioned into fields,

some for display text only and some for data entry (named form

devices).

PCTE draws upon its focused charter to address networks of

high-resolution, high-capability workstations. It establishes an

elaborate model of screen and input device servers (processes)

with which an active tool (separate process) may interact.

Services are provided to establish interactive windows on the

screen, and provide window management, mouse control and keyboard

input support similar to that found on the Macintosh and other

systems.

CAIS-A is looking to provide similarly expansive user

interface services, with an eye towards what will be expected of

future software engineering workstations and any suitable

existing standards. Graphics standards which would support the
drawing of software engineering diagrams and standards for

windows, mouse and keyboard input are being considered.

2.2.3 Conventions for Processes, Files, Relationships and
Attributes

In this organization for defining system interface sets we
have covered the model for information management and the nature

of services which are provided. Still needed for a useful system
are standards for predefined node types, relationships and

attributes upon which all tools can depend across all

implementations from one system to the next.

The most common use for standards definitions is in the area

of configuration control of the file system. For entities which

34

are files (of type File or derived from type File) required

attributes and relationships might be creation date and time,

tool which called for creation and input file which the tool used

to derive the contents of the new file. This is only a small

sample of standards and conventions which might be needed.

Much in these standards is embodied, in an EA/RA data base,
in the typing of entities and relationships. Both PCTE and CAIS

define an essential kernel of entity and relationship typing, but

fully support user extension. As will be discussed shortly,

CAIS-A has the additional capability for migrating such

information directly between systems, along with the contents of
the data base.

A second aspect of the EA/RA data base which must be
standardized and, in some cases, built into the structure and

implementation of the system services, is access control. In

this area CAIS-A has gone significantly further than PCTE. PCTE

provides only the first form of access discussed earlier, that of

informal partitioning of the data base for ownership, and
protection from accidental (unintended) or casual but undesired
access.

CAIS-A attempts to provide the attributes and relationships

necessary for a formal security system. In this case, for

accreditation as formally secure, the implementation would have

to be centered around a secure kernel which implemented the only
access to the data base. Much of this accreditation would thus

be based on the nature of the implementation. What CAIS-A

provides, however, is the conventions and standards upon which

such a system could be built.

A third area for conventions and standards is in support for

distribution. PCTE, in recognition of its intended configuration

of a Local Area Network (LAN) of workstations, provides some

support in its definition for such an implementation. Its

approach to distribution is basically to mandate the transparency

of distribution to the user, plus augment its services and

standards to accommodate distribution requirements. Note that

the PCTE network is uniform and configurable, with no hierarchy

of rights or responsibilities.

PCTE adds to its services and standards in the following

ways:

• All identification of objects, processes, users, message

queues, etc. is system wide and recognized throughout the
network without reference to its location.

• Process start-up may optionally specify a location for

execution, or may have default parameters which require

start-up on certain workstations.

35

v

_ I

V

v

v

w

• The data base is maintained in separate volumes which are

mounted on the various workstations in the system. There

are no restrictions for relationships between objects on
different systems.

• Volumes and workstations are modeled as objects in the data
base with such modeling used to allow identification and

management of the resources.

• There are a certain number of services which directly

support network management.

• A standard model with kernel support services is provided

for replication of data with coordinated updates. This is

provided mostly to standardize implementations, i.e., it is

not generally visible to the typical interface set user. It

provides services, however, which aim to protect the system

from resource unavailability and network failures.

CAIS-A in meeting its intentions to support distribution

will necessarily define similar support for identification,

resource control and management, although there is no indication

that support for replication would be standardized as part of the

interface set (an omission that will retard standard support for

general redundancy management, unfortunately.) CAIS-A will,

however, make visible a standard for information interchange (the

common external form) which could apply to communications between
processors in a distributed implementation.

The final area for conventions and standards is in support

for system interaction• PCTE is essentially lacking in this

area, while CAIS-A's approach (as discussed earlier) is limited
to the definition of a common external form.

2.2.4 Design Issues in Defining a Common Interface Set in Ada

The final point of discussion on System Interface Set
specifications is that of some general Ada style and design

guidelines. This discussion is drawn from the recent effort to

define an Ada specification for PCTE (PCTE-Ada) based upon the

original specification written for C and UNIX (see PCTE Ada
Conceptual Design Document). The design issues which were

encountered can be grouped into issues in the use of the

following Ada capabilities:

private and limited private types in package

definitions, handles, naming and modularity of package

definitions, exceptions (a proper mechanism for error

reporting/handling), generics, and tasking.

36

v

Some similarity can be found in how CAIS-A and the Ada binding of
PCTE will be defined. CAIS-A will revise its error handling

mechanism to support just error reporting without the raising of

exceptions. While it is of academic interest to debate the

appropriate Ada style, compatibility with the C version of PCTE
is forcing this approach for PCTE-Ada. Also, a similar approach
to task execution within processes is being adopted.

v

r_

=

mine

37

L

3.0 Common Environment Architecture

The collection of computing environments to be managed for

future software systems will require capabilities to support
heterogeneity, physical distribution, cooperative autonomy,
safety and reliability in the execution environment.

Heterogeneity is often unavoidable due to growth and evolution

over the long operational life of a system. Physical distribution
and cooperative autonomy will be necessary to model the structure

of the disparate organizations involved in software system

development, integration and operation. Safety and reliability

are crucial to support critical systems upon which life and
property depend. This section discusses features which are

necessary to realize the entire set of dynamic capabilities as

well as reports on the existing static host environment models
that support a subset of these characteristics.

Three types of software environments, each with different

functional and operational requirements, can be identified: host,

target and integration. In the host environment, the primary
concern is the development and maintenance of software, as well

as associated documentation, requirements, specifications, design
rationale, etc. The characteristic host environment will be

resident on a general purpose operating system. In contrast, the

target environment application software and runtime support
modules will either reside on a general purpose operating system

or a subset of an operating system specifically tailored to the

supported application or, as discussed in Chapter i, reside on a

bare machine. The target environment is concerned with deployment

and operation of executable code, the preservation of semantic
integrity across disparate processors, and the realization of

hard real time constraints, possibly in the presence of software,

hardware, operational or environmentally induced faults. The
functions of the integration environment are: control of the

target environment baseline, including management of and

promotion to further baselines, and the integration of software
applications with hardware and operations.

Throughout the iterative, dynamic evolutionary life cycle of

a system, the software (in different forms: multiple versions,
different representations etc.) at one time or another, will

reside in at least one of, or migrate among, the three

environments. A Portable Common Execution Environment (PCEE)
model that eases the software environment interaction and

migration process among the three types of environments would

provide a solution that increases productivity and the support of

computer systems and software safety. A consolidated PCEE model

can facilitate the management of the life cycle complexity of
software systems in a similar manner across all three
environments.

38

L

L

L

A PCEE is sustained at the stable interface set described by
the Ada packages selected from the Runtime and Extended Runtime

Libraries to be compiled into an appropriate RunTime Support
Environment (RTSE) for each processor. The PCEE can be defined
to consist of:

a set of policies for the management of services and

resources to be provided to the application program(s),

the set of management modules to enforce the policies,
and a set of rules for modification and extension.

Ideally, the PCEE should provide a common set of execution

services and resources to application software and the command

language that both hides and supports the use of differing

instruction set architectures, data bases, data communications

systems, bare machine implementations and operating systems

without regard to their underlying implementations. We propose

this common framework be modelled by a set of standard

interfaces, a common object representation, and a supporting
conceptual architecture.

3.1 The Model for Information and Process Management

Information is a fundamental resource and processing is a

fundamental service of a software system. In order for a system

to be most effective, the management scheme must accommodate the

capture, organization and retrieval of all relevant information.

Lessons learned through the development of successively more

sophisticated data base management systems and, more recently,

operating systems have shown that an entity/attribute

relationship/attribute (EA/RA) model is very powerful for

representing system level meta-data. An EA/RA model provides a

basis for describing the system in a manner which can be uniform

across host, target and integration environments. EA/RA supports

a layered approach with stable interface sets and stable

frameworks for organizing system resources. It can be used to

represent and enforce precise, abstract interface specifications

which are independent of the underlying manner in which they are

implemented. The IRDS draft standard for representing instances

of EA/RA models can be used to describe a formal semantic model

for PCEE information and process management. IRDS provides a

vendor independent, standard method for representing EA/RA models

across heterogeneous computers. An important feature of the IRDS

is the extensibility of the model.

3.2 Conceptual Architecture for the PCEE

The framework of the PCEE must be flexible enough to be

represented in a number of ways in order to accommodate tailoring

and extensibility in a large number of implementations. The PCEE

should also support the differing operational requirements of the

three environments. In the host environment, software is

39

%--

typically supported by the services of a general purpose

operating system. The target environment, in comparison, often
cannot tolerate the overhead of a general purpose operating

system. The PCEE can be considered a "virtual environment" which
resides on a RunTime System (RTS) (which is supported by the

Kernel). The Kernel "hides" features which are machine-dependent.
The PCEE should "hide" underlying system software implementations

ranging from a tailorable bare machine implementation to a

tailored operating system to a general purpose operating system

which co-exists with combinations of the first two.

A conceptual architecture for a PCEE is depicted in Figure 1-6.

Reconfigurability and performance tuning capabilities are

supported by the architecture for all three environments. The
architecture is based on a combination of layered and virtual

machine approaches: the lowest layer is the minimum functional
subset that isolate the hardware dependency features. This

minimal subset that supports the basic runtime support is called

the kernel. Additional runtime environment services will be

implemented via library modules and extended kernel functions.
These include runtime services such as virtual memory services,

file management, and atomic transactions.

Based upon the needs of the application code and the

configuration requirements of the intended execution site, the

runtime system is tailored by selections from a set of standard

library routines. These modules provide a layered architecture

on top of a virtual machine approach.

Subsetability and reconfigurability are accomplished by

first identifying the lowest layer as the minimum functional
subset that isolates the hardware dependency features. This

minimal subset forms the foundation of an extended machine for

the kernel that supports the basic Ada runtime support functions.

Typically, this may include functions such as I/O services,

memory management, process management, and interrupt handling.
Additional runtime environment services will be implemented as

incremental library extensions to the minimum kernel functions.

The extensions will use the kernel services only, to ensure

portability. These extended runtime environment services may
include services such as the Ada tasking, file management, the

dynamic memory management, and virtual memory services. Together
the kernel and the runtime support library routines for the

twelve component models discussed in Chapter 1 can be grouped

into safety kernels underneath a PCEE to maximize protection for

life and property.

To provide for selectability and configurability of
services, the interdependency of the runtime library elements
will be identified and minimized through the design process. The

set of special service functions, such as fault management,

configuration management, and system security can be provided as

4o

independent packages. These packages should be designed to
interface to the kernel functions only; there should be no direct
interaction among the packages. All RTSE library routines
execute as privileged code.

To support system tunability, certain functionalities can be
provided with multiple implementations, each with different
operational performance. For example, to support certain real-
time control processing, a special set of scheduling algorithms
and interrupt handling mechanisms will be required.

3.3 Additional Services of the PCEE

PCEE services required to support the collection of
distributed heterogeneous computing environments, as well as the
rationale behind the selection of particular services are
discussed in this section.

3.3.1 Security

In any significant software system, security must be

provided. A distributed system which supports a diverse user

group is particulary vulnerable to problems which result from

inappropriate access to information, processes, and devices. In

the minimal case, protection must be provided against inadvertent

access resulting from programmer error. Additionally, errors

resulting from the incorrect functioning of programs should be

prevented from causing catastrophic results by security built

into the PCEE. (That is, even "error free" programs cannot

always execute without error in a distributed and/or non-stop
environment.) At the other extreme, limited access to life,

property and other mission-dependent critical functions must be

provided against the hacker, the terrorist, and the disgruntled

employee. Secured processing may also be required. Context

sensitivity may also be at issue: an access operation that would
be allowed in a "secure" area might be prohibited depending on

the location of the terminal being used to effect the

transaction. Security should be provided according to the Trusted

Computer System (TCS), to at least the Multi-level security (MLS)

class B3.

From the discussion in Chapter 1, the reader is reminded

that, at least for the SSP, security is a "means-to-an-end",

whereas, safety is one of the "ends" which coexists with

fulfillment of mission requirements. Specifically, security is

one of at least 12 component models required as "means" to

support both of these "ends". Obviously any compromise of the

required component models underneath the PCEE (such as the

dynamic, multilevel security model) can endanger both safety and
mission. It is precisely for this reason that the PCEE interface

set must be specified in Ada rather than in any untyped langauge

such as C and the UNIX System V interfaces. The terms "secure

41

r

_ .

UNIX" and "safe UNIX" area temporal oxymorons unless:
I) all features of UNIX are hidden beneath the

virtual interface set of a strongly typed
language such as Ada and

2) application programmers are denied access to

assemblers and other untyped languages.

The point is that the C compiler is an undefendable trap
door to the underlying features of UNIX and it can be used to

defeat the best efforts to support security, reliability, fault
tolerance, and safety. Even if such "secure" or --far more

difficult to develop -- "safe" UNIX implementations can be

demonstrated at acceptance test/delivery time (and some "secure"

ones have), mere mortals are unlikely to be able to sustain them
over the life cycle without lots of Divine intervention. This is

particulary true in distributed applicationsl

3.3.2 Cooperative Autonomy Among PCEEs

Not all of the potential interactions of a long-lived system

can be determined during its initial design. In order to provide

the most extensible basis for PCEEs, the capability for

coordinating control among PCEEs that may need to interact should

be provided. Conventions for determining the result or precedence
when coordination is required should be established within the
definition of the PCEE.

3.3.3 Process and Information Migration

Executing processes and information require the capability

to migrate to different locations to accommodate load balancing,

optimal access and/or fault tolerance. Load balancing is

concerned with optimizing and/or ensuring processing throughout a

system. Secondly, in order to expedite the transfer of frequently

accessed data, movement of data (or procedures) may be necessary.
A third, and potentially most important, reason for allowing

processes to migrate to other processors is to provide critical

functions in a fault-tolerant manner to support safety. In the

event that a system recognizes the imminent failure of a

processing resource, the most important functions and information

would have the capability to move or be moved to other sites.

3.3.4 Heterogeneous Processors

During the existence of a lohg-lived system, the

incorporation of new hardware technology may be beneficlal to the

system. New technology may be necessary to accommodate evolving

needs or changing objectives. In order to accommodate new

hardware, a PCEE may require support for a heterogeneous set of
processors. To accomplish transactions between these differing

processors, a common external format for representing data and

data structures may be necessary (see the discussion in Chapter

42

w

2). Common formats provide the mechanism for information

exchange between machines whose underlying data representations
are not compatible.

3.3.5 Communication

Communication, whether the underlying processors are similar

or different, must be managed in a manner that supports remote

communications, asynchronous signals and the Ada rendezvous.

Remote communications are best provided through the use of the

Remote Procedure Call (RPC) which is necessary when a called

subprogram resides on a remote processor. The need for

asynchronous signals arises when a condition needs to be

communicated, without the signalling processor relinquishing or

slowing the execution of its thread of control. For both safe and
--less demanding-- fault tolerant inter-task communication of

application information or control synchronization, the concept
of the Ada rendezvous is needed. Remote procedure calls must

adhere to the semantics of the Ada language (i.e. behave as if

the procedures were resident on a single processor). (see Rogers

and McKay, 1986). Asynchronous signals, which do not wait for a

response, provide communication services while allowing the

signalling processor to continue its work. Additionally, the PCEE

should suppor_ the concept of the Ada rende_vQus ac;os_ the
Detwork. _he rendezvous provides a semantic model for two

communicating autonomous threads of control with defined

exception conditions in any of the three: calling task, called

task, and communications link between the tasks. Beyond the

semantics of communications, a model for implementing the actual

transaction is provided by the International Standards

Organization/Open Systems Interconnection (ISO/OSl) model. Within

the model there are seven layers. Each layer provides a different

portion of the required service, so that the amount of overhead

incurred can be tailored depending on the complexity of the

transmission. The ISO/OSI model is an emerging standard which

will provide a uniform representation for asynchronous and RPC
communications. However, for the SSP, the OSI model should be
extended to include the Ada rendezvous semantics to maximize

support for safety in a fault tolerant environment with

distributed non-stop components.

3.3.6 Transparency of Distribution

Distribution of logical entities within the PCEE should be

addressed at the most general level. Distribution across Remote

Area Networks (RAN) of integrated Local Area Networks (LAN)

requires solutions to the problems of unreliable communications,
determination of an appropriate unit of distribution and unique

naming (across networked interacting processors). The model

should incorporate transparency of location, replication,

parallelism and fault-tolerance and a "sufficiently precise"

granularity of control. The amount of transparency provided

43

determines the amount of overhead incurred by the system.
Ultimately, it also determines the safety and extensibility of

the systems life cycle.

3.3.6.1 Unreliable Communications

In addition to addressing the types of communication

required and the manner in which they should be implemented, the

problems of dealing with "unreliable" communications links must

be addressed. Unreliable communications are especially apparent

in remotely connected systems. (This is exacerbated when the

links are subject to the laws of orbital mechanics.) In such

systems, especially when communication links are not direct

hardware connections, problems can occur in establishing and

maintaining transmissions. In order to assure "normally" correct
communications mechanisms, the services provided by the ISO/OSI

model may often be satisfactory. However, fault tolerant

operations which the safety of life and property depend upon are
far easier to sustain with support for a robust model of

cooperating, autonomous threads of control which effect

distributed, nested transactions. The authors believe the Ada

rendezvous is the best available model for this purpose and

strongly recommend its addition to the OSI model.

3.3.6.2 Unit of Distribution

The choice of a source-code level unit of distribution is

concerned with source-level language visibility rules, which, in

distributed RTE's, is a determining factor in feasibility of

implementation. In Ada, the unit of distribution can range from

a named entity to a compilation unit. Distribution of logical

entities, at least to the task level, will be necessary in order

to provide dynamic fault tolerance. The determination of the unit

of distribution which would be appropriate for PCEE connections
is beyond the scope of this paper, but is critical to the design

of the PCEE. The most apparent distribution certainty determined

by the SERC team and others is that the unit of software

distribution supported by the PCEE must be below the program
level and at least to the task level. Otherwise the risk of

being unable to sustain the SSP life cycle requirements for both

mission and safety support is unacceptably amplified.

3.3.6.3 Unique Identification

Operating systems support objects, such as files,

directories, processes, services and I/O devices. A unique name,
in a distributed environment, helps to protect the objects in the

environment from incorrect manipulation. A method for the unique

identification of objects, streams, and transactions, throughout
a distributed environment, which complements the choice of unit

of distribution, is required. Universally unique identifiers are

44

L z

r_

necessary for configuration management. They are also required to

locate entities that may migrate throughout a vast network or to
restore entities that existed previously. They are also

extremely useful in the safest and fastest possible replacement

of an entity that was just recognized as having failed in a non-

stop, fault tolerant environment.

3.3.7 Transaction Management

Transaction management is concerned with the organization of

actions into groups which can be monitored by the PCEE.
Transactions should be able to be described, manipulated and

controlled in much the same way that information within the PCEE

is handled. Transactions management requires the capability to

effect atomic actions, synchronization, inheritance of

capabilities, and control stable storage. Transaction support may

also require support across a distributed system, as discussed
above. Atomic actions are perceived by the PCEE as one

uninterruptable action to either advance to the next stable state
or remain at the current one. Physical atomic actions can be

combined with "vertical" atomic actions to provide sets called

transactions. Nested, distributed transactions are the most

parsimonious, efficient and robust of the known ways to support
safe, distributed systems. If any component part of the action

fails, either a recovery option is successful or the whole action
is considered failed. Values associated with the transaction are

not updated. Of course, use of expendable quantities, such as

firing a rocket, or creation of by-products, such as heat
generated by the running of a machine, must be taken into
consideration when the initial state is "reinstated".

Synchronization provides a mechanism for limiting access to an

entity so that multiple actions do not produce indeterminate
results. Inheritance allows "parent" processes to assimilate the

knowledge of their subordinates once the subordinate terminates.

Transaction management is an integral part of providing a
stable baseline. A stable baseline allows each process in the

system (to the desired level of granularity) to interact with the

system in a manner which provides "fire walls". That is, a

process which does not complete successfully cannot impact an

unrelated process. The stable baseline is advanced from one
stable state to the next. A stable state is a description of the

relevant portion of the system data base which can only be

changed by correctly completed transactions. Semantic integrity

across environments, including type protection, in terms of Ada

semantics, is required throughout the persistent data base. That

is, values for a transaction are not written until the entire

transaction has successfully completed. In this way, each action

terminates correctly or has (virtually) no effect on the system.

3.3.8 Granularlty of Representation

45

The level at which a software processing entity is
considered by the environment to be a "black box" is the lowest

level at which a representation is supported. For instance, if

the granularity of representation is an Ada program, then any

task spawned by that program is not recognized by the
environment. This has ramifications if the parent task becomes

abnormal, especially in a distributed environment. Since the

environment has no knowledge of the subordinate task, it cannot
employ a mechanism for removing the task from the environment. If

another copy of the program is started and spawns the task again,

the continued functioning of the originally spawned task may lead

to undesirable results. Granularity of control should be defined

for performance measures (design phase), debugging (coding

phase), process monitoring (operations phase) and assessment of

hardware and software changes (operations/maintenance phase). The

granularity of control will dictate the ability to manage

multiple command streams. Each body of a distributed subprogram,

task or package in a state of execution, while they possess a

thread of control should be accessible through PCEE interfaces.
Facilities for maintaining the transaction status for transaction

management (as discussed above) should also be associated with

each subprogram, task or main program. By providing this level of
control, a fault-tolerant process is better able to assess its

state of execution and determine the need for recovery
procedures. Note that the single process control block

representation of an entire program (as in UNIX, CAIS or PCTE)

can not support these needs. However, a legal extension to CAIS

that could support these needs is conceptually straight-forward.

Simply have the process control block of the program represent

aggregate views of all its tasks while allowing an expanded view

of the program showing a control block structure for each thread-

of-control's participation in the aggregate. (See Rogers, K.,

1986.)

3.3.9 Interoperability

Interoperability in the minimal sense, is concerned with the

capability to move source code among processors in the

environment without changing the functionality of the software.

Interoperability can be extended to include provisions for common

external data formats which would allow tools to generate or

manipulate information used or created by other tools. If

interoperability among tools is provided, an Ada Program Support

Environment (APSE) could be created from individual tools. In

this way, the APSE could be tailored to the particular

application under development. Interoperability of control
streams implies that commands should have the same effect (within

reasonable limits) anywhere in the environment.

Data,
across the

processors.

tools and control streams should be interoperable

distributed network, extendin_ to heterogeneous

Requirements for a common external form may be

46

w

necessary to implement these functions in an autonomous manner.

In order to provide interoperability for individual tools,
abstract data types (such as for a symbol table) will need to be

defined. These types will have to be entered into the data base

by the producing tool (for instance, a compiler) for later access

by "consuming" tools (e.g., symbolic debugger). EA/RA models

represented in IRDS standard form can be enormously useful in

supporting such interoperability. (See the Chapter 2 discussion
of Common External Form.)

3.3.10 Optimizing the PCEE Goals

The PCEE should balance the life cycle goals of safety,
performance, portability, adaptability, cost effectiveness, and

stable baselines across the host, target, and integration

environments. Reasonable trade-offs among these goals are

necessary to manage distributed, non-stop, large and complex

systems. The PCEE should provide support for multiprocessing
capabilities to provide for concurrent and non-stop operations.
It should build on the guidelines established in the ARTEWG

Catalog of Interface Features and Options (CIFO) to provide
runtime support (see ARTEWG CIFO, July 1986).

3.4 Existing Models and Paradigms

If an existing set of models and paradigms is not exploited
in defining the PCEE, a unique set will have to be created. The

use of existing models and paradigms provides not only a

demonstration of feasibility but also a supply of tools that may

have application within the PCEE. Two existing environment

models, the CAIS and the PCTE, were studied as possible
foundations for the PCEE.

3.4.1 Common APSE Interface Set

The current CAIS, MIL-STD 1838, is an extensible baseline

from which a complementary PCEE can be developed. The successor

to the CAIS is referred to as CAIS-A (note that the descriptions
of the possible contents of CAIS-A are the CAIS contractor's

current thinking and are subject to change). The authors believe

CAIS-A can and will further the baseline established by the CAIS
toward the complementary goals of a PCEE.

Object management within the CAIS is modelled by nodes, and

is based on the EA/RA model. Nodes have properties and
attributes that can be read using CAIS interfaces. The node model

is designed to execute processes in substantially the same way,

except for timing. This fulfills the PCEE requirement for an
EA/RA-based system. A further extension that would make the CAIS

implementation more compatible with the desired features of the

PCEE would be to use the IRDS standard for EA/RA.

47

The CAIS provides a virtual host environment system

interface between the virtual operating system (represented by
the Kernel APSE) and the environment tools; therefore, it can be

implemented on either an existing general purpose operating
system or a tailored operating system. In this manner, the CAIS
provides a "virtual environment" which could be extended to

support all three environments that comprise the PCEE.

Security and performance features will be enhanced (in CAIS-

A) in order to provide at least Trusted Computer System class B3

multi-level security (MLS). (Formal verification is required for
a higher classification.) The incorporation of this class of

security meets the currently perceived need for dynamic security
within the PCEE. Implementation of security facilities in a

modular manner should allow the PCEE to utilize only the

necessary portions of the CAIS-A implementation and only the

necessary portions of the security class currently imposed.

CAIS-A will also address the facilities that will be

required to coordinate actions among cooperating CAISes. The
issues that are addressed by CAIS-A will provide at least a basis

for determining the interactions among cooperating yet autonomous
PCEE implementations.

In addition, CAIS-A will address interfaces that exist among
multiple CAIS implementations (across RAN's and LAN's). One

aspect of the network implementation will be interfaces which

will allow processes to migrate to other processors. CAIS-A will

allow support for heterogeneous processors. Some support will be

given to a common external data format, to allow communication of

data and information between differing processors. Unique names

for objects will also be addressed, as will some support for at
least single-level atomic transactions.

Within the PCEE definition, support for RAN's of LAN's will

be required. The underlying assumptions for modeling RAN's can be
used as a basis for PCEE LANs. The basis can be extended to

include those assumptions to account for the distinctive features

of LAN nodes. However, the reverse --i.e., scaling-up-- is not

true. As an example, SQL's single level transactions are

believed to be inadequate for supporting safety during RAN

operations. Furthermore the life cycle cost effectiveness and

performance of single level transactions is believed to be

significantly worse than for PCEE support of distributed, nested
transactions.

Neither the current CAIS nor the plans for CAIS-A include

provision for the types of communication that are necessary for a

PCEE. The CAIS also does not provide support for all three of the

environments of the PCEE. The current goal of both CAIS and CAIS-

A is to provide interfaces for the host environment.

Additionally, support for a unit of distribution below the Ada

48

w

program level, interoperability among programs, and transaction

management would be necessary extensions to CAIS-A, in order for
it to provide the functionality needed within the PCEE.

3.4.2 Portable Common Tool Environment (PCTE)

Selected features of the PCTE should also be incorporated
into the PCEE baseline. Although there are some features which

are common between the PCTE and the CAIS, there are also

differences. The PCTE provides some features which go beyond CAIS

and CAIS-A toward providing facilities necessary for the PCEE.

These PCTE features can be considered a further step toward a
conceptual and physical framework for integrating the tools and

rules for a PCEE. This framework is supported by the PCTE Ada
Specification.

In the PCTE, the first four layers of the seven layer
ISO/OSI model are implemented to support distribution at the LAN

level. The lack of support for the upper three layers is a most

unfortunate shortcoming of the current PCTE. LAN support also
includes the concept of agents, servers and clients which is a

significant strength. Messages and message queues allowing
executing programs to exchange information directly are also

provided by the PCTE interface specifications. The existing
implementations of PCTE can be evaluated as a starting point for

the PCEE implementation of RAN's of integrated LAN's.

The PCTE provides support for both distributed nested

transactions and the implementation of replication facilities for

entities in distributed environments. It provides mechanisms to

synchronize data access. These features will be necessary within

the PCEE, to provide transactions and redundancy management, in
order to provide a stable baseline.

Example PCEE features needed for Space Station which the

PCTE does not support include security, automatic information and

process migration, granularity below the Ada program level,

tolerance of unreliable communications and unique naming. See

Figure 3-1 for a comparison of certain PCEE, CAIS, CAIS-A, PCTE
features.

49

fFeature

Status

Validation Suite

Basis

Representation

Information
Management

Kernel

Security

i Cooperating
Environments

Location

Processor

Types
Common External
Data Format

Communications
Implementation

Distribution

Unique Names

Transaction

Management
Data Access

Stable Storage

Granularity of
Representation

Interoperability

Goals

Support for
Multiprocessors

Support for
nonfunctional
requirements

Environments

I/O

Figure

PCEE

Definition Stage
Required

AR I P-.WGCIFO and
Clear Lake Model

Object

Extensible EAJRA
(based on IRDS)

"bare machine',

operating system

Full TCS "Puce Book"

required

Migratable

Heterogeneous

required

Full OSI

RANs of

Integrated LANs
Objects, Processes,

Transactions,

Relationships,
and Attributes

Distributed Nested

Synchronized

required

Each thread of control

for each program

data, tools, control

}ortability, performance
stable baseline & safety
across all environments

required

ARTEWG CIFO and
Clear Lake Model

Host,Target
and Integration

CAIS

MIL-STD

In Progress

unique

CAIS-A

In Progress

In Progress
i--

C_S

Node Node

unique ENRA unique ENRA

"bare machine",

operating system

minimal

not supported

Fixed
• I-L_

Homogeneous

not supported

NA

single site

Nodes,

Relationships,
and Attributes

NA

NA

NA

program

data

portability,
performance

NA

NA

Host

"bare machine"

operating system

TCS B3 class MLS

supported

Migratable

Heterogeneous

some support

TBD

Some RANand

I.AN support

Nodes,

Relationships,
and Attirbutes

Single Level

NA

NA

prog ra m

data

portability,
performance

NA

NA

Host

graphics, windows character-oriented graphics and
and other devices terminals windows

3-1 Comparison of Features for a PCEE
50

PCTE

Completed

Completed
('based on XP¢)

UNIX SVlD

Object

unique ENRA

operating
system

minimal

I.AN only

LAN migratable

Homogeneous

minimal support

Four layers of OSI

LAN

Objects,
Relationships,
and Attributes

Distributed
Nested

Synchronized

NA

program

data

portability,
performance,

stable base

NA

graphics and
windows •

NA

Host

(some Target)

3.5 Considerations for PCEE Guidelines

Inclusion of the capabilities discussed above into a standard
for a PCEE impose constraints on both the RTSE as well as tools

within the environment. Requirements for recognition of

individual threads of control levies requirements on the RTSE not

only to provide "hooks" into that type of information (which

extends to dynamic task creation and retirement) but also creates

a requirement for a "standard" manner of providing that

information (across different ISA's). One solution might be to

include this as an optional EA/RA represented feature within an

extended runtime library (XRTL).

The choice of an appropriate unit of distribution also

impacts the amount of information that must be provided by the

compiler to the RTSE. The smaller the unit of distribution after

a certain point, the greater the amount of information and,

therefore, overhead is required. The amount of overhead incurred

must not be so high as to negatively impact the performance of

software in the target environment. On the other hand, the

larger the unit of distribution, after a certain point, the less

opportunity to exploit parallel and distributed processors which
also begins to negatively affect performance.

3.6 Conclusions

The PCEE should provide a flexible, extensible model which

addresses the three types of program execution environments. The

features of the PCEE should be defined in a modular manner, so

that when an environment is "scaled down", the overhead of a full

set of capabilities is not imposed. Useful existing and emerqing

standards, such as IRDS and OSI should be employed and extended

wherever necessary to eliminate duplication of effort and derive

benefits from the corresponding development of conforming tools.

The PCEE model must be robust enough to provide the required

services, but at the same time must be easily implemented,

tailorable, and extensible (extending to the capability to be

implemented in a number of different ways). Finally, the choices

for features, such as the granularity of control, should be made

in a manner that provides for a technically feasible and

economically reasonable solution.

v

51

4.0 Recommendations and Summary Discussions

The findings of this research team lead to five suggested
actions:
i. Adopt CAIS as a necessary and extensible subset of the

System Interface Set (SIS) and User Interface Set (UIS)
of the distributed host environments (i.e., the SSE)

and the integration environment (yet to be fully

defined).

• Publicly declare NASA's intention to help shape,

develop, and utilize an upward compatible CAIS version
which will combine the best features of the current

CAIS and PCTE, and also meet specific needs of the

Space Station Program including the dynamic perspective
of the Portable Common Execution Environment (PCEE).

Discussion:

There are currently seven working prototypes of CAIS that

have been reported in the public domain. Several more are on the

way. Although they are not production quality, the reports

clearly indicate that CAIS does indeed facilitate both developing

and acquiring portable tools. By contrast, there exists one

reported prototype implementation and one production quality

implementation of PCTE. Unfortunately, the production quality
version currently uses C language interfaces and therefore would

be completely unacceptable for the life cycle of the Space

Station Program. However, the recent conversion of these C

specifications to an Ada specification set holds great promise
for a subsequent production quality implementation featuring the

advantages of building and importing tools which adhere to the
Ada interfaces.

From the perspective of stable frameworks to host tools and
rules, the current PCTE has many desirable features not found in

the current CAIS. Unfortunately, the pragmatic considerations

that led to the early availability of a production quality

implementation of these desirable features are entirely too

dependent upon obsolete models and paradigms within the

underlying C language and UNIX System V. Therefore, CAIS-A has

the unique opportunity of benefiting, in the long term, from the
valuable lessons learned from working with both earlier versions

of the CAIS and PCTE.

3. Publicly acknowledge that the

simultaneously support:

requirements to

building-in and sustaining safety while

meeting mission requirements and
meeting future requirements for extensibility and

adaptability

52

are issues-at-high-risk in the critical path of the
Space Station Program. Furthermore, recognize that
none of the current test bed activities now underway
are specifically focused on these issues.

Q Establish a fully instrumented, highly reconfigurable

PCEE test bed as soon as possible to support empirical
verification and validation of the concepts and

requirements of a PCEE intended to facilitate

simultaneous support of:

building in and sustaining safety while

meeting mission requirements and

meeting future requirements for extensibility and

adaptability

in large, complex, non-stop, distributed systems such

as the Space Station Program•

Discussion: From a logical perspective, the fully

instrumented, highly reconfigurable PCEE test bed would be used

to support:

of:

proof-of-concept demonstrations

empirical evaluations
and verification and validation

• concepts . models

• principles . methods
and associated:

• standards . practices

• guidelines . policies

which are related to developing and sustaining a PCEE appropriate

for the SSP life cycle•

From a physical perspective, the PCEE test bedwould be used

to support:

• proof-of-concept demonstrations

• empirical evaluations
and verification and validation

of implementations of PCEE:
• services and resources
• stable interface sets

• layers
• stable frameworks

. reusable runtime library modules

• mappings from conceptual to implementation models

• mapping to-and-from the requirements and tools of the
host and integration environments

• mappings to-and-from other NASA test beds and
subsystems (e.g., Technical Management and Information

System, TMIS).

53

w

w

F

Combing the benefits of these two perspectives, the PCEE
test bed would be an invaluable resource to the SSP to
facilitate:

• early emulation of an appropriate working environment

• early demonstration of the fault tolerance, security,
and other components which support safety in the
distributed target environment

• the study of integration issues in an end-to-end

environment which is large, complex, non-stop, and
distributed

. the study of one more aspects of the SSP life cycle
management of:

• complexity

• safety and quality
• cost effectiveness

• technology transfer for the benefit of NASA and

NASA's constituency.

early evolvement and evaluation of the distribution of
Ada entities among parallel and distributed resources

other important studies which evaluate and lower risk
in the execution environment of the SSP.

5. Because major SSP contracts such as TMIS and SSE have

recently been awarded, publically declare the

assignment of responsibility to an appropriate SSP

office or working group to effect the integration of
the System Interface Set (SIS) and User Interface Set

(UIS) not only across the three environments (host,
target, and integration) but also across the various

SSP contracts (SSE, TMIS, DDT&E, etc.). This task

should begin as soon as possible to reduce unnecessary
risk, costs, and complexity.

Discussion:

Reports such as this one and the SERC memos on issues of

transistioning from CAIS to CAIS-A (5 May 1987) and on

computer systems and software safety (15 June 1987) could be

used to stimulate discussion and planning of an initial
agenda•

54

APPENDICES

A)

B)

McKay, C. "A Proposed Framework for the Tools and Rules to

Support the Life Cycle of the Space Station Program",

COMPASS '87 Conference Proceedings, IEEE, June 1987.

McKay, C. and P. Rogers. Life Cycle SupDort for "Computer

Systems _nd Software Safety" in the Target and InteqratioD

Environments O_ th_ Space station Program, SERC Set of

Presentation Foils, June 1987.

w

55

APPENDIX A

f

A PROPOSED FRJ_qEWORK FOR THE TOOLS AND RULES TO SUPPORT THE
LIFE CYCLE OF THE SPACE STATIOH PROGRAM

Charles W. McKay

Software Engineering Research Center
University of Houston CLeat Lake

Abstract
In 1986, the author was the leader of a
team coemissloned to produce two reports
for NASA concerning the requirelants for
a life cycle, Software Support
Environment (axE)for the Space Station
Program (SSP). The interim report
identified over ?0 functional tooll and
seven standards or proposed standards
that would be helpful in extending a
Coaa_n APSE Interface Set (CAXS)
conforming Nlnimal toolset of an Ads e
Programming Support Environment (HAPSE)
into an appropriate SSE for aupportinQ
the life cycle of the SSP. The final
report described the requirements for in
integrating foundation and framework to
host the "tools and rules = identified i_

the interim report. _11is paper
amplifies two vital boundary points
considered by these reportst the
proposed, principal goal and the
proposed means for organising a model of
the SSE to affect this goal.

Xntroduction

This paper addresses two boundary points
in environments which support the life
cycle of large, coq)lex, non-stop,
distributed systems such as the Spice
Station Program (SSP). A useful model
which depicts systems-level considerations
in addressing these issues consists of
three macroscopic, hierarchical levelst
goals and objectives, strategies and
tactics, and means.

?he two focal points of this paper are the
extremes of this hierarchical spectrum.
The first is to state the goal for such
applications and to identify four of it's
most important components. The second
identifies three of the lowest levels of
appropriate means to achieve this goalt
concepts, principles and models. Since
the ease of this paper cannot permit an
adequate explanation of the many linkages
and considerations necessary in bridQing
this spectrum, the reader should be aware

eAda is I registered trademark of the US
Governsent, Ads Joint Program Office

of the author's rationale for addressing
these two widely separated sets of issues.
The author Is convinced that the =means =
represented by conventional designs of
_t of the off-the-shelfl operating
systems, data base management systems and
data coiml_inic&tionl SyStems ire iflidequite
to support the goals Of the $$P regardless
of how veil stated Ire the objectives and
how carefully chosen are the strategies
and tactics to be used in organising,
developing and applying more traditional
concepts, principles end models as the
means to do the Job. Therefore, 8
=b<)ttom-up e presentation Of proposed means
believed to be adequate for the challenges
will be described as follovst objects,
Stable Xnterface Sets (SXS), layering,
Stable Frameworks (SF), conceptual and

iRpleuentation mK_els of a computer
systems and software support environment.
These descriptions amplify related
portions of the two reports referred to in
the bibliography.

An Appropriate Goal

The team believes the major goal of the
SSP should emphasize both process and
product. The product should enable
mankind to derive the benefits of

colonizing and industrializing that
portion of our solar system from the earth
to the moon in preparation for future
programs which extend into deeper specs.

?he process should enable distributed
tom from government, industry and
academia to learn how to incrementally

develop and continuously sustain large,
complex, non-atop, distributed system
which _st be trusted to simultaneously

satisfy a variety of critical requirements
throughout the life cycle, tour important
parts of this goal are believed to be,

1. To enable the successful life cycle
management of the coaple:ity of the
computer systems and software integr-
ation and configuration management.
(le, to enable the complexity tO be
controlled over the ll|e cycle of a
successful project.)

2. To support systems and 0oftware level
safety and quality control throughout

ORiGiNAL FAGE rS

OF POOR QUALI'rY

11tO196-6/ST/OO(X)-O033 $I.00 @ 1987 IEEE

COMPASS " '8 7

Conference Proceedings

4,

the life cycle. {Ie, to continuously
protect life and property.)
To support systems and software level
cost e[fectiveness throughout the fife
cycJe, fie, to enable mankind to af-
ford deriving the benefits of the
program.)
To transfer into practice those
aspects o(the systems and software
engineering support environment which

can increase the systems and software
productivity, safety and lower llfe
cycle costs of other projects through-
out NASA •nd NASA's constituency.

Means

=The third rule was to commence my

reflections with objects which were
the simplest and e•slest to understand,

and rise thence, little by little, to
knowledge of the most complex."
(Desc•rte•, Discourse on Method t About
1620 AO

The discussion of means will begin with •

description of the fundamental building
block: the object. Although high level
languages such e= Ads can certainly be

abused so that the desirable properties to
be discussed are compromised, the

remainder of this paper will assume that
the facilities of the language will be

properly used. Subsequent discussion of
means will be based upon higher levels of
object groupings to •chieve the desired
properties for the systems and software
support environment.

I. Objects

As used in this paper, objects may refer

to either logical or physical entities.
All objects must have abstract
specifications that answer three
questions: What services and resources

are to be provided by the object? How
well are these services and resources to

be provided7 Under what circumstances are
they to be provided? This abstract
specification can be considered to provide

a "virtual interface = to the object. From

the perspective of users, the abstr•ct
specification also provides the "one way
in/one way Out = for the object. Since
objects are intended to communicate by
messages, the virtual interface can be

used as an inventory of the message
requirements. Abstract specifications •re

always to be separately compilable from
the implementation part of the object if

an implementation part exists.

The implementation part,lf it exists,
hides all design decisions regarding the
object. Trade offs between: hardware and
software, algorithms and data structures,
and traditlon•l versus A! design

techniques are encapsulated inside this

ubject implementation. Other information

which may also be hidden inside the
implementation part may include knowledge
that this is • complex object which is
cq_posed of several other objects. For

example, a component written in assembly
language can be encapsulated inside an

object body. Since users of the object
oan only see the abstract specification,

access to the code segments and data

structures of the assembly language
routine would be hidden from the users and

controlled inside the inlplementation part.

For objects implemented in Ads, the
visibility and scoping rules are specified
in the language reference manual. Details
of authorization and enforcement of acres•
control rights which are more restrictive
than these visibility and scoping rules

are systems level issues beyond the
applications source code level.
Entity-Attribute/Relationshlp-Attrlbute
(£A/RA} models will be proposed in the
next topic as the means to gain these
additional and desirable controls.

2. Stable Interface Sets (SIS)

Stable Interface Sets (SIS) c•n be formed
from • union of the abstract

specifications of a group of objects which
are designed to contribute to • common

level of functionality and to offer the

same level of visibility. Three SIS
requirements listed below •re best

understood by considering the unique
perspective listed for each.

I. From the perspective of a complete in-
ventory, an SIS is • virtual interface
set resulting from the union of all

abstract specifications of the objects
designed to be visible at this inter-

face. fie, the tOtal collection of
all the services and resources to be
provided at the SXS, how well and
under what clrcummtsnces.)

2. From the perspective of any given ob-
ject within an SIS regarding it's re-
lationship to other objects in the
SiS, there should exist s formal model
in £A/RA form describing:

the "need-to-know =•nd =right-to-
know" visibility among all objects
of the SIS

the grouping of objects into dis-
creet sets of services and classes
of services within each of the
sets.

The benefit of the formal _K_el is not

only to allow automated aids to assist
in checks for completeness and consis-

tency but also to provide rules for
considering proposed extensions and
modifications. The concept of classes
of services within • given set of

ORIGINAL [:AGE IS
OF POOR QUALIFY

services allows all external users ot
the service met to have access based
upon their authorization and their
context of operation. (le, there ate

things that must/should still be done
even when doing everything is no long-
er an option.)

3. From the perspective of external ob-
Jects outside the SIS, a formal model
in EA/RA form Is used to describe:

exactly what sets and classes of
services are to be visible to the

object
the protocols (necessary steps} and
access control to be imposed upon
the external object and It's use of
the services and resources provided
at the SIS.

3. Layering

Systems should be constructed in a
hierarchy of layers where each layer is a
Stable Interface Set. The layers

contribute to firewalling of faults that

occur within s layer. Upper layers ere
often able to compensate for faults which
occurred in lower layers. 1_ne successive

layers of trust explicitly reflect both
the functional architecture of the system

and the differing degrees of criticality
associated with the functionality of the

layer. Similarly, faults and higher
layers are firewalled to prohibit
contamination in lower layers (although

the lower layers may not be able to
compensate for the higher level faults).

Such layering promotes isolation of
related units of functionality and
separates the concerns of =what" from

"how = . Security, integrity and
reliability are three critical concerns
that can now be addressed appropriately
within each layer.

4. Stable Frameworks (SF}

The three requirements for Stable
Frameworks [SF) are:

1. Within any layer a collection of
closely related objects that should be
regarded and maintained as a unit

shall be identifiable by unique at-
tributes.

2. The collection of objects within a
layer which are to be identified ms
a unit via the unique attributes can
be treated as "strongly typed'. That
is, a complete determination can be
made of legal values and legal opera-
tions for SF's of this type.

]. Within any layer, a formal model in
EA/RA form can be used to represent

the relationships of the strongly

typed SF's tO other strongly typed
SF's both within and external to the

layer.

As an example of the use of stable

frameworks, consider the systems level

requirements analysis for the Space
Station Program. One contractor might
be responsible for determining the re-
qulrements for the Space Station it-
self while two other contractors are

respectively responsible for deter-
_Inlng the requirements for the or-
bltai transfer vehicle and the free

flying platforms. Therefore, in the

llfe cycle project object base, the
basellned requirements for the Space
Station will be uniquely identified by
at least the following attributes:

systems requirements analysis phase,
persistent object base layer (this

assumes they are approved and under
baseline control}, Space Station re-

quirements. Similarly, the same lay-
er of the project object base might
contain a stable framework consisting
of all objects with the unique at-
tribute identifiers: systems re-
quirements phase, persistent object

base layer, orbital transfer vehicle.
These SF's may be regarded as strong-
ly typed with £A/RA models depicting
their relationships to other SF's plus

the access control that will protect
the products of one contractor from

accidental corruption by another.

5. The Conceptual Model

The top of the attached figure depicts a
conceptual model of the life cycle to be
addressed by a systems and software

support environment. The rectangles
labeled P 1 through P 6 represent phases
of the life cycle. The elongated S shaped

figure to the right of the ellipse is
marked P 7, maintenance and operation.

This icon represents successive iterations
through the first six phases. For the
purposes of this model, a phase may be
defined as: a discrete period of time
and activities delineated by a beginning

and an ending event for each iteration in
the incremental evolution of the llfe

cycle.

The first phase, P I, represents system
requirements analysis. All subsequent
phases may involve three sets of staggered
activities in time. For example, P 2

begins with the translation of s section
of the system requirements into software

requirements. In turn, these two will
later contribute to s P 2 activity

referred to as hardware requirements

analysis. Finally, s third P 2 activity
will use these three sets of results for

ode rat ions I requ irement s analys is.

Similarly, the resolution into software,
hardware, and operational concerns are

mapped in staggered time to D 3,

O_Jr_AL PAGE IS

OF POOR OUAL/TY

preliminary design, and the subsequent

phases. The fourth phase is detailed

design. This precedes P 5, coding and

unit test, which exlsts in a staggered

time relationship to ongoing activities of

P 6, computer software component

integration.

The closed pairs of parallel arcs

represent documentation requirements

tailored from POD Standard 2167 to meet

the needs of NASA. For example, the

closed pair of parallel arcs separating

the rectangles for P I and P 2 represents

the systems requirements analysis

documentation. This documentation set

creates a vertical stable interface set

separating each iteration of systems

requirements analysis on the left from the

beginning of a transformation into

software requirements on the right. For

example, the first iteration of systems

requirements analysis, P I, might satisfy

a minimum treshold of requirements for a

small, identifiable segment of the systems

requirements documentation. When this

threshold is reached, automatically a

signal is triggered to freeze the

attributes of that segment of the document

and to signal the quality management team

they can begin verification and validation

(shown in the small circles). Upon the

recommendation of the quality management

team to project management, a

configuration management decision {shown

in the tab as "SDR', system design review)

determines whether this portion of the

document should be placed under

configuration management. The decision is

forwarded to the project object base which

also triggers both a report to the team

doing systems requirements analysis and a

signal to initiate activities of the team

who will take this portion of the systems

requirements and begin transforming them

into software requirements. Later, the

software requirements analysis will create

a corresponding segment of the software

requirement analysis document shown as the

closed pair of parallel arcs separating P
2 and P 3. When a threshold for this

segment of the document is reached,

automatlcally the system is triggered to

freeze the attributes of this part of the

work so that the results maybe evaluated

by the quality management team. Other

documents identified in the figure include

the: software design specification

document, software design documentation,

software development documentation. As

stated earlier, the circles represent

verification and validation activities by

members of the quality management team.
These activities are in accord with a

version of POD Standard 2168 tailored to

meet the needs of NASA,

The tabs represent configuration

management decision points. The first one

shown on the left is the "SRR', system
requirement review. 7his represents the

decision of the cllent to award the

contract for a particular portion of the

automated system to a contractor. At this

point, an instantiatlon of the "tools and

rules" plus the environmental framework is

established for the contractor and the

contract becomes one of the first items in

the llfe cycle project object base to

enter configuration control. Subsequent

configuration management decisions are

identified from left to right as: system

design review, software specification

review, preliminary design review,

critical design review, test readiness

review, functional configuration audit,

physical configuration audit, formal

qualification review.

The ellipse which is to the left of the P

9 icon represents acceptance testing.

This is a transition milestone from the

acceptance of a developed baseline for the

target environment to the maintenance" and

operation that sustains the baseline in

the future. The life cycle project object

base shown at the right hand side of the

figure supports: systems engineering,

software engineering, hardware

engineering, operational engineering, and

the management of people and logistics.

(Please note: the icons and general

organization of the conceptual model were

adapted from McDermid and Ripken, 1984.)

6. An Implementation Model

In contrast to phases, activities have

been defined as: the process of

performing a series of actions or tasks.

Thus, some activities take place within

phases. Others, such as quality

management, integration and configuration

management, information and object

managemen t , document generation, and other

forms of communication, are pervasive

throughout the life Cycle. Together, the

concepts of phases, activities, a llfe

cycle pro)ect object base, and required

documentation as stable interface sets

help to explain the mapping of the

conceptual model to the implementation

model at the bottom of the figure.

From the perspective of the users of the

environment, the first stable interface

set which is experienced is known as the

"User Inter_ace Set" (UIS). The UIS is

defined as a part of the Common APSE

Interface Set (CAIS). It provldes an

integrated view of the users access to the

tools and other services and resources of

the environment vla their terminals or

work stations.

Via the UIS, the user is probably

connected to the services and resources

provided by one of two stable frameworks:

ORI_fNA_ _.GE IS
OF POOR QUALITY

either the technical toolset or the
management toolset for the particular
phase of interest. If, for example, the
methodology chosen for the systems
requirements analysis phase (P 1) is
COntrolled Requirements Expression (COR£),
then the technical tools in the stable
framework for that phase are intended to
reinforce the correct us• of the

methodology and to promote productivity of
the requirements engineers. Similarly,
the stable framework composed of the

management tools for that phase are both
complementary to the r•quireaents for
properly applying the methodology and for
the needs of the project man•germ. If the
methodology chosen to transform the
systems level requirements into software
requirements is Structured Analysis and
Design Techniques (SADT), then the
technical tool set that composes the
stable framework for reinforcing the
chosen methodology is shown under the
corresponding pha•e in the conceptual
model. Two points are worth noting.
First, phase identification attributes

will be • property of •11 objects,
relationships and attributes created by
the tools of a given phase. Thus, one can
look at the flgure and imagine a •table
framework in the lowest layer of the first

phase that represents the current baseline
of system requirements for a free flying

platform. These requirements had to be
captured by authorized users applying the
technical tools of the P 1 phase,

Although the tools of the second phase may
have read-only access to the stable
framework so that the transformation from

system to software requirements may take

place, the stable framework which will
compose the software requirements under
baseline control in the bottom row Of the

second column of the figure could only
have been developed by the technical tools
for the software requirements analysis

phase. Furthermore, the use of these
identification attributes to impose strong

typing and access control insures that
only the authorized teams from the

appropriate contractors using the
appropriate phase specific tools can
modify the content• of the stable
frameworks. The second ms}or point

considers • possible decision to change
the methodology employed in the P 2 phase.
Since P 2 exists between the stable
interface• of the systems requirements
analysis documentation (stored in the life
cycle project object bale) and the
software requirements analylil
documentation (also in the project object
base), then the change procedure will be
to acquire/develop new technica_ tools and
management tools for that phase and to
install them •8 the stable framework
replacement for the older tools. Note
that this Is possible because the
technical tools and management tools for

each phase are horizontally bounded as
stable frameworks between the UIS and the
SIS and they are vertically bounded by the
stable interface sets which represent the
documentation requirements for transitions

between phases. (Actually, the phase and
layer ide_tiflcation attributes accomplish
this vertical bounding.)

Be next stable interface set is the
"System Interface Set" (SIS) Of the CAIS.
The CAIS UIS and SiS provide a framework
for importing and/or developing new tool
set capabilities. _ne reader should note
that if any of the chosen tools were
developed in a language other than Ads,
the recommendation of the author is to
encapsulate the tool inside the
implementation part of •n Ada object. In
this manner, users who access the tools
via the UIS can only see the services and
relourcel of the abstract specification of
the object containing the tool. Therefore,

no llfe CyCle dependencies upon any of the
code segmsnte or data structure• of the
foreign language can inhibit the
subsequent evolvement of the environment.
The reader should also note that the SIS
Of the CAIS is specified in far more
detail than the UIS. The reason is to

facilitate the development of truly
transportable tools among Ma Programming
Support Environments (APSE).

The next two layers conelst of the Stable
Interface Sets for quality management and
integration and configuration management

respectively. The _ustification of
ordering flows naturally from the
activities previously described in the
conceptual model above. That is, when an
iteration through a phase has produced
sufficient documentation for • given
segment of the document, a trigger freezes
the &tt¢lbutee Of the segment from further
change so that the quality management team
may examine it. Thi• in turn is followed
by report• to management and appropriate

control boards which then results in a
configuration management decision.

The next layer is bounded by the stable
interface set specifying the services and
resources to be provided and consumed by
information, library, and object
management. The services and resources
available at this virtual interface set
hide lmDlementation details from the user,
tools and layers above. There are three
macroscopic layers shown beneath the
information, library and object management
services layer, although each of these
layers may in turn be subdivided depending
upon the size and complexity of the
project. The first layer is used to
facilitate tool-to-tool communication.
all tools should communicate through the

project object bile. When tools
co¢uuunicate directly to one another,

O_IGi_0_/,L PAGE IS
OF POOR QUALn_

valuable audit trail information is lost

and properties o[recovery, security,

zntegrity, and reliability are severely

compromised. The leader should note that

as tools and the tool set for a particular

phase produce objects, relationships and

attributes, the tool-to-tool communication

that takes place in this layer had to pass

through each Of the preceding layers so

that an appropriate history and management

control is exerted upon the products at

all time. When objects, their

relationships, and associated attributes

are proposed for consideration in the next

baseline, they are advanced into the

temporal level of the life cycle project

object base. Again, attributes for the

stable frameworks always identify the life

cycle phase fie, column), the layer fie,

row), and the unique identification of the

stable framework of related objects that

are being considered. When the proposed

changes are approved to roll the current

baseline forward, and the integration and

acceptance testing of the new baseline has

been completed, a change of attributes

installs the stable framework in the

"persistent" object base layer

representing stable frameworks under

baseline control.

Summarv

for large, com01ex, non-stop, distributed

systems such as the Space Station Program

which evolve incrementally while they are

being continuously sustained and which

must simultaneously satisfy a large

collection of critical requirements, there

are four tyrannies that must be avoided in

the systems and software support

environment• Specifically, these include

life cycle dependencies upon any

proprietary or particular= operating

Lil. Ce,_

i,4'* a

C'.**psl

• C_u_t_i llii| *i ill

liilslili lWilii*_iill Lii* ¢i'ii*

"!i "......]

system, data base management system, data

communications system, and instruction set

architecture. Otherwise, the author

believes strongly that a combination of

all three requirements for: complexity

management, safety management, and cost

effectiveness will be unacceptably

compromised. To avoid these dependencies,

this paper amplifies a proposal to use a

graduated series of concepts and

principles to evolve a conceptual and an

implementation model sufficient for the

life cycle of such projects. These are:

objects, stable interface sets, layers,

stable frameworks and conceptual models.

Acknowledgments and Disclaimers

The author gratefully acknowledges the

contributions of his co-authors for the

original reports: Robert Charette and

David Auty. In turn, all three gratefully

acknowledge the contributions of the other

researchers of the Joint NASA/JSC UH CL

APSE Beta Test Site Team. Without their

insights, discoveries, verifications and

validations, this paper ana these reports

would never have been possible.

On the other hanS, the views of the

author, co-authors, and research team do

not necessarily reflect those of NASA.

Bibliography

McDermid, J. & Ripken, K. Life Cycle

Support in the Ads Environmentf Cambridge

University Press, 1984.

McKay, C., Charette, R., & Auty, D.,

• An Interim Prc_ress Report on:

• A Final ProK/ress Report on:

A Study to Identify Tools Needed to

Extend the Minimal Toolset of the Ads

Pro</rammlnq Support Environment (MAPS£)

to Support the Life Cycle of Larqe,

Complex_ Non-Stopt Distributed Systems

Such as the Space Station Proqram.
/_Task Orc[er No. UH JSC BII, Contract

........ _.l. NO. NAS 9-17010, 1986.

Piillii¢

b_ ilb

m.llq_ e |,

i .IT.

twl.

6

; , : [.f*_i,_|*l l, I14|i¢¢ *h._l._6(

: : • ,

' _ i ,,., _.. ,., c....,

• I I i ,_

llil * iiii • II l Ill, l

04 w Ill li*l_ Ill II**

la.*,,* Cal_*f¢,*l II_IWI

OF POOR QUALITY

L

i

u

u
u - U

•-m U 0

cu

r
I

I, i _-

v

I I I I i i

II I ,Ill

Ii I I I II I

S
J

U _A U

o.

o

u U 6J

u c
_m_o
uo'_U

_'=>
- al 0

ORIGINAL F/ZGE iS
OF POOR QUALITY

APPENDIX B

=

i

C]_ co

O0

G) 0 t._ "-" .e-, "l-"

O0mm

_.J
L__

(I)

(D

o_ o_

(D
C_

L--

c_
CD

cZ_

Dm

e-

u.J

o 0
O0

I

0
0

0

c_ -r"

0

om

L_

_m

m

C_

im

.e--
0

--- _ "C_ _

EE o m o

=

0 _ "--"
_- 0 _

m •

0

O0

l

w

w

J_j

CLI_.

CD
I.---

a_s

4Q_

.Omll
Cl)

w

0
I IImII

N

0
mi

0

0

0

ii

Z

w

CD
_J
O
_=
O
L__

Q..

c_
C_ A

Q) LJ.J
_- L.LJ
ca C.)

O
cO l--

E
c_ O
CtJ _-

i!

E >
LJ.I

C_ °m

CZ) t--

O. X

E u_
O c-

O
E

--- O
¢0 C.)

O ¢D
m

CD c_

c_ O
---J Q_

c_

m

C.)

CD "O
O'J c_

c_
"_ ¢Z)

c_
"" Eom

CD c-

O E
L t'-

¢D e"
_3 CD

D" r-"
O

3 C
b--

c_ C_
e- ¢D
O e-

_m

: c
b__

e-
CD CD

'- E
un

m

¢I) _
0

_ L

¢I)

0
li===

_m

0

0

m

0

0 _=
---_o

°_

c_

u

om

_- ¢I)
m

-- E
..=.

0

E _¢I)
m

m

m

_u

--=='

X

um

0

_==

c_ --- Q)
_-.
O c_

e'- ¢D

c_

e- e- m
L_ CD O

a_ E o

L__

.--- e-- _"

O _.-

O "_
C_ _- C_
O_ O

- _.

L

--z

r7

O9

mm

0

I.i_

m

e_

_-.

O
Q=

E
0

0

0

0

cO _

"0

e- e'_

e-

"._ a_

lb...._ m

0

(/3 CD
CZ) v
0
0

Q)

0

U'J
cl) .13

Z3 0

o E
am

:" (I)

> E

"0

(I)
(I) "_3

m

mm

m

m

0 _'-

(I) (I)

---- O
CJ
_.= ---

::3
E c: E

cO (I)

o p: =_.,
(I)

_..-,

F: ..Q ,_

'3 L
(D O

C_ O --
um

=e=.a

O (D O

Q') _; O
E_ _--

(Z)

m

(.3

k_

(1)

,=i==a

O

O

m

O
wm

O
_m

::3

E
p:
O
C.3

(D

(J

_c: E

(I) O
(.3 __

::3 _"

O
(_0 O
_,) °m

=e,=.a

"O (J
°'=--"m

co C).
Q.

(I) cO

um

_-- 0

0
{I)

Cl)

0

u_

m

(b

wm

¢Dn

_m

C)

CD
E
c_

mm

u

_-=
O

(D

¢/)

m

(.7

¢D

O

,,¢,==,

¢D

c_
¢.3

E
E_
O
C)

m

c_

O
mm

c_

¢_
Q..
O

B

m

c_

c_

(I)

m

¢_

m

O..

E
O

m

im

c_

¢Z)

(D
m

E
O

O
m

c_
om

c_

om

¢D

p:
O
L._

_i===

L._

¢_

O
(3
CD

E_
im

,,¢I=,=#

c_

c_

¢_

E
ol

c_

c_

O
E

(D

CD
E

mm

c_

c_

L_

gu

O
C3
¢D

¢Z)

c_

im

m

c_

O

O

_m

¢_

¢Z)

c_

Orj

CD

m

c_
U_

¢D
m

-O
c_
L_

(D

O
I---

O

0eJ

c_

CD

cu
OeJ

(%)

E

(%)

c_
c.)

wu

m

Z3
"O

O

O
n

c_
CD

(%)
s.._

m

mu

c_

e-
o

ol

c_

Dn

e--
_3

E
E
O

C.)
e.-
(D
CY_
L_

L_

m

e,-
ou

lm

un

A

o _
E o

O
O

CO c_
e" _.j
O O

n

O c_

CD O

A

0
m

I

_n

m

_g

0
m

I
"0

(%)

m

0

0

0
0

0

e-

m

i,_mm

->,

t,-
0

mm

wm

im

,,.i.=..

Q_
E

0
i

0
_,-

0

e-.-

G)

E
c-
O

wm

CD

-I.,.=,,I

E
Bm

0 e.-

0

L__

um
m

X

wm_:.---
cD ..Q

0 e-.

0 e"
am

0 ",-* G)

lm

_ 0mm

mmlmB

r._ Q_

::_ O0

¢,_ :,_
G,_ 0

E _

,.._ e-"
0

gm

0 _-"

i

0
Bm

0
If,.,.,

Q.

llm

Q_

m
m

im

iJ_

c_

I,,.,.,,
im

N

m

e-

m

_,,
0

T

T

-r-

c-
x_. c_0 _ 0

o ._. ,,, ,,, ,,,-,::, _E
OO ..Q <D CD CD C::

.c:C -I- -I- -I- i

-II

A

I

I

im
I,,.,. m

Bm mm

om

tT_

ce-_

c- c-
O G,)

E

°.,.B
m

c,J Cp
,_ee"

0

t3')
_I 0

¢Dc,

-11

c,D o
l--

I

0 :_
col

m

cl:l L.L

0 0
._.JZ

0 _I
E',

"_ 0

"t_Z

im m 0

a £D i--

®

-I--,.#

I,.I_

m I,,,--

O O
--a I---

@

®

®

_c: (D
CD

"_ c:

CD
(D ---.

-,-' O
::_ I---

_Q

r"_ U_

1 •

0

/

i m

m

0

oO

GO
I

O0

0

or)

0

<

Wl

lu

O0

0
m

>
a)

oo
I---

/

0
m

ll

c_

<

_D

m

m

_o

°---- 0
m

_E
Wl

_c

°_

O> _-'
O00¢D

0

Or)

I

0
c-.

0

/

¢-

_" E
o
o0 o

0 _'-

.,.,

"_ _x_

c_ (D

0

I
c_o -,-'

0_.-

0"_

_o 0
el

0-,-,

.
CO 0

0

O0 (1)
1

OO _--

.._ 0

_... O0
m

_00

._, t-
_ .,.-,

¢D _-"

cc_

c--i_ -

O9

c.)
¢D

0

c_

0

t-
O

c_
0

gl

om

t--

-!

_.0

(1)
E
c-
O

-!

>

E_

c_

o_

c--
0

c_

E_

C

I1

wl

Ol _
c-- 0

l

--- _ _-" -__
"_>_ --- 0

c- I 0

EoE E_ "-
" CI_ c" _Z

_-- c- c-

0

E

t-"
O

gm

:_ CD

O um

O
O

o_ c'-

E

O "-'

.,.- -_
¢)
0.) (%)

o'J O)

O-_
C_.. c--
C_-O)

r.n

.._ :::30
O O _

im

_.- c'- N

_" "O

•-- o') C_
O) _- O

m

c_

/

O0 C)

_" (%)

•cC O c.)
E o

r-_ c_ o.

m

O

O

I

O

I
00

c_
0_

0.)

O

(%)

o')

C%)

E
em

c'-

m

(..$
mm

(._

c_

0.)
lm

"1-

oS

OO
0.)

O

O)

cO;

im

¢O

O

E

O0

o,_ O
..O ¢_.

"O

c--"

e" '*"

C_ I1)

0

e-

lm

im

¢-

m

e-

c_

0

E

c_

0

m

ii

0 _ _

col .w C_.

_- _ _¢_ (._

¢'_ c_ _ _
Q) O "--" _--

EY_ CO; O)
"o- -=
O)

..O
ii

wm_

"O

O

E
O)

..O

09

E
Q)

c_

c_

E

o _-- o
C_._ "_

Dm

O

! o
L_

O r'- O._
II

mem

c,o .C_
_u

_ _ o
_, o,,,m

Bm _ B

m

c_ _-o _'_

!----

L

w

...,

TWO sCEnARIOS FOR

SSP EnUlRonmEnT

In aooo+ R.O.

® x x o °
x x _ o o

x . x _ o

HOST
EnUIROnmEnTS:

• OEUELOP

• SUSTAIn

InTEGRATIOn
EnUlROnmEnT:

• CONTROL OF
TGT EnUIR

BASELINE

• InTEGRATIOn
UGU FOR nEXT
BASELINE AnD

TEST 6
InTEGRATIOn

PLANS

TARGET
EnUiROnmEnTS:

• OEPLOV

• OPERATE

Bibliography

w

ACM SIGAda Ada RunTime Environment Working Group (ARTEWG), A

Catalog of Interface Features and Options for the Ad_

Runtime Environment , ARTEWG Interfaces Subgroup3, Release 2,
23 July 1986.

Auty, David, Ada and Operating Systems Practice and Experience in
Targeting Ada, presentation to NASA/JSC, April 1986.

CAIS Panel Discussion, First International Conference on Ada

Programming Language, 2-5 June 1986, Session D.5.1.

Chen, C. "Conceptual Architecture

Environment", Rockwell SSSD IR&D
(fall 1987).

for an Ada Run-Time

Progress Report 86567,

Dolk, R.D. and R. A. Krisch II. "A Relational Information

Resource Dictionary System", Communications of the ACM, Vol.
30, No.l (January 1987).

Fisher, Herman, PCTE Overview and CAIS Comparison Impressions,
9 September 1985.

Fisher, Herman, PCTE Ada Conceptual Design (PCD), Mark V Business
Systems, Draft of 22 November 1986.

KAPSE Interface Team (KIT), DoD Requirements and Design Criteria

for the Common APSE Interface Set (CAIS), 13 September 1985.

KIT Meeting, presentation by CAIS-A contractor, April 1987.

Mark V Business Systems/Systems Designers PLC., PCTE

Interface Requirements, Version I.i, 27 December 1986.

Ada

McKay, C. "Distributed Computer Systems and Software Safety",

SERC Lecture Notes, April-June 1987.

McKay, C. A Proposed Framework for the Tools and Rules to

Support the Life Cycle of the Space Station Program, COMPASS
'87 Conference Proceedings, IEEE, June 1987.

McKay, C. Life Cycle Support For "Computer Systems and Software

Safety" in the Target And Integration Environments of the

Space Station Program, SERC Memo, 15 June 1987.

McKay, C. "CWM's Perspective of:

. Probable enhancements to transition CAIS to CAIS-A

• Potential implications for 3 environments of the

Space Station Program (host, target, integration)", SERC
Memo, May 5, 1987.

McKay, C., R. Charette, D. Auty Final Report on: A Study to
Identify Tools Needed to Extend the Minimal Toolset of the

Ada Programming Support Environment (MAPSE) to Support the

Life Cycle of Large, Complex, Non-Stop, Distributed Systems,
SERC, July 1986.

Military Standard Common APSE Interface Set (CAIS), MIL-STD-1838

31 January 1985.

Space Station Software Support Environment Functional

Requirements Specification, National Aeronautics and Space

Administration, Johnson Space Center, JSC 30500, Draft 3.0,
(6 April 1987).

Notkin, D. et. al. Heterogeneous Computing Environments: Report

on the ACM SIGOPS Workshop on Accommodating Heterogeneity.

PCTE A Basis for a Portable Common Tool Environment, Project

Report, ESPRIT Technical Week 86.

PCTE A Basis for a Portable Common Tool Environment Ada

w

Functional Specification, First Edition, Volume i.

Rogers, P. and C. McKay. "Distributed Program Entities in Ada",
Proceedings of the First International Conference on Ada

Programming Language, 2-5 June 1986, p B.3.4.1.

Rogers, K. "Extending the Granularity of Representation and

Control for CAIS Process Nodes", Proceedings of the First

International Conference on Ada Programming Language, 2-5

June 1986, p D.2.3.1.

Thall, R. and S. LeGrand. "The CAIS 2 Project", Proceedings of

the First International Conference on Ada Programming

Language Applications for the Space Station Program, 2-5

June 1986,

p D.2.6.1.

L

